메뉴 건너뛰기




Volumn 49, Issue , 2012, Pages 142-151

A new zone temperature predictive modeling for energy saving in buildings

Author keywords

Artificial neural networks (ANN); HVAC; Multi zone

Indexed keywords


EID: 84882290433     PISSN: 18777058     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.proeng.2012.10.122     Document Type: Conference Paper
Times cited : (28)

References (14)
  • 1
    • 38649125566 scopus 로고    scopus 로고
    • Supervisory and optimal control of building HVAC systems: A review
    • 2008/01/01 2008
    • Wang, S. and Ma, Z. Supervisory and Optimal Control of Building HVAC Systems: A Review. HVAC&R Research, 14, 1 (2008/01/01 2008), 3-32.
    • HVAC&R Research , vol.14 , Issue.1 , pp. 3-32
    • Wang, S.1    Ma, Z.2
  • 2
    • 77649219633 scopus 로고    scopus 로고
    • Robust MPC for temperature control of air-conditioning systems concerning on constraints and multitype uncertainties
    • Xinhua, X., Shengwei, W. and Gongsheng, H. Robust MPC for temperature control of air-conditioning systems concerning on constraints and multitype uncertainties. Building Services Engineering Research & Technology; 2010, 39-55.
    • (2010) Building Services Engineering Research & Technology; , pp. 39-55
    • Xinhua, X.1    Shengwei, W.2    Gongsheng, H.3
  • 4
    • 39149127282 scopus 로고    scopus 로고
    • Modelling of tropical greenhouse temperature by auto regressive and neural network models
    • Patil, S. L., Tantau, H. J. and Salokhe, V. M. Modelling of tropical greenhouse temperature by auto regressive and neural network models. Biosystems Engineering; 2008, 423-431.
    • (2008) Biosystems Engineering; , pp. 423-431
    • Patil, S.L.1    Tantau, H.J.2    Salokhe, V.M.3
  • 5
    • 79953749287 scopus 로고    scopus 로고
    • Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office
    • Mustafaraj, G., Lowry, G. and Chen, J. Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office. Energy and Buildings; 2011, 1452-1460.
    • (2011) Energy and Buildings; , pp. 1452-1460
    • Mustafaraj, G.1    Lowry, G.2    Chen, J.3
  • 6
    • 2342635095 scopus 로고    scopus 로고
    • A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building
    • Mechaqrane, A. and Zouak, M. A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building. Neural Computing & Applications; 2004, 32-37.
    • (2004) Neural Computing & Applications; , pp. 32-37
    • Mechaqrane, A.1    Zouak, M.2
  • 7
    • 63049115986 scopus 로고    scopus 로고
    • Prediction of indoor temperature and relative humidity using neural network models: Model comparison
    • Lu, T. and Viljanen, M. Prediction of indoor temperature and relative humidity using neural network models: model comparison. Neural Computing & Applications; 2009, 345-357.
    • (2009) Neural Computing & Applications; , pp. 345-357
    • Lu, T.1    Viljanen, M.2
  • 8
    • 0038238083 scopus 로고    scopus 로고
    • Application of artificial neural network to predict the optimal start time for heating system in building
    • Yang, I.-H., Yeo, M.-S. and Kim, K.-W. Application of artificial neural network to predict the optimal start time for heating system in building. Energy Conversion and Management; 2003, 2791-2809.
    • (2003) Energy Conversion and Management; , pp. 2791-2809
    • Yang, I.-H.1    Yeo, M.-S.2    Kim, K.-W.3
  • 9
    • 0242306123 scopus 로고    scopus 로고
    • Prediction of the time of room air temperature descending for heating systems in buildings
    • Yang, I.-H. and Kim, K.-W. Prediction of the time of room air temperature descending for heating systems in buildings. Building and Environment; 2004, 19-29.
    • (2004) Building and Environment; , pp. 19-29
    • Yang, I.-H.1    Kim, K.-W.2
  • 10
    • 77649231266 scopus 로고    scopus 로고
    • ANN-based thermal control models for residential buildings
    • Moon, J. W. and Kim, J.-J. ANN-based thermal control models for residential buildings. Building and Environment; 2010, 1612-1625.
    • (2010) Building and Environment; , pp. 1612-1625
    • Moon, J.W.1    Kim, J.-J.2
  • 11
    • 84863944042 scopus 로고    scopus 로고
    • Review of input variable selection methods for artificial neural networks artificial neural networks
    • Suzuki, K
    • May,R., Dandy,G., Maier, H. "Review of input variable selection methods for Artificial Neural Networks Artificial Neural Networks - In Suzuki, K, Methodological Advances and Biomedical Applications; 2011, 19-42.
    • (2011) Methodological Advances and Biomedical Applications; , pp. 19-42
    • May, R.1    Dandy, G.2    Maier, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.