메뉴 건너뛰기




Volumn 5, Issue 3, 2013, Pages 229-251

Novel inertia weight strategies for particle swarm optimization

Author keywords

convergence; Dynamic inertia weight; Fine grained inertia weight; Particle swarm optimization; Stagnation

Indexed keywords

BENCHMARK FUNCTIONS; CONVERGENCE; DOUBLE EXPONENTIAL FUNCTIONS; DYNAMIC INERTIA; FORAGING BEHAVIOURS; INERTIA WEIGHT; PARAMETER SELECTION; STAGNATION;

EID: 84881612401     PISSN: 18659284     EISSN: 18659292     Source Type: Journal    
DOI: 10.1007/s12293-013-0111-9     Document Type: Article
Times cited : (91)

References (57)
  • 1
    • 79958240240 scopus 로고    scopus 로고
    • PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems
    • Alireza A (2011) PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Automatica Sinica 37: 541-549.
    • (2011) Acta Automatica Sinica , vol.37 , pp. 541-549
    • Alireza, A.1
  • 2
    • 33749431419 scopus 로고    scopus 로고
    • On the performance of the particle swarm optimization algorithm with various inertia weight variants for computing optimal control of a class of hybrid systems
    • Arumugam MS, Rao, MCV (2006) On the performance of the particle swarm optimization algorithm with various inertia weight variants for computing optimal control of a class of hybrid systems. Int J Discrete Dyn Nat Soc pp 1-17.
    • (2006) Int J Discrete Dyn Nat Soc , pp. 1-17
    • Arumugam, M.S.1    Rao, M.C.V.2
  • 4
    • 23344434757 scopus 로고    scopus 로고
    • Nonlinear Inertia weight variation for dynamic adaption in Particle swarm optimization
    • Elsevier, Amsterdam
    • Chatterjee A, Siarry P (2006) Nonlinear Inertia weight variation for dynamic adaption in Particle swarm optimization. In: Computers and operation research, vol 33, Elsevier, Amsterdam, pp 859-871.
    • (2006) In: Computers and operation research , vol.33 , pp. 859-871
    • Chatterjee, A.1    Siarry, P.2
  • 6
    • 84863292699 scopus 로고    scopus 로고
    • Structure learning of Bayesian Network using a Chaos-based PSO
    • Chen JY, Shen JJ (2012) Structure learning of Bayesian Network using a Chaos-based PSO. Adv Mater Res pp 2292-2295.
    • (2012) Adv Mater Res , pp. 2292-2295
    • Chen, J.Y.1    Shen, J.J.2
  • 7
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
    • Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. Proc IEEE Congr Evol Comput 3: 1951-1957.
    • (1999) Proc IEEE Congr Evol Comput , vol.3 , pp. 1951-1957
    • Clerc, M.1
  • 9
    • 79960915541 scopus 로고    scopus 로고
    • Accurate tracking of harmonic signals in VSC-HVDC systems using PSO based unscented transformation
    • Dash PK, Mallick RK (2011) Accurate tracking of harmonic signals in VSC-HVDC systems using PSO based unscented transformation. Int J Elec Power Energy Syst 33(7): 1315-1325.
    • (2011) Int J Elec Power Energy Syst , vol.33 , Issue.7 , pp. 1315-1325
    • Dash, P.K.1    Mallick, R.K.2
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statiscally comparisons of classifier over multiple date set
    • Demsar J (2006) Statiscally comparisons of classifier over multiple date set. J Mach Learn Res 7: 1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demsar, J.1
  • 12
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • Derrac J, García SR, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1): 3-18.
    • (2011) Swarm Evol Comput , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    García, S.R.2    Molina, D.3    Herrera, F.4
  • 14
    • 61849115677 scopus 로고    scopus 로고
    • A method of self-adaptive inertia weight for PSO
    • Dong C, Wang G, Chen Z, Yu Z (2008b) A method of self-adaptive inertia weight for PSO. CSSE 1: 1195-1198.
    • (2008) Csse , vol.1 , pp. 1195-1198
    • Dong, C.1    Wang, G.2    Chen, Z.3    Yu, Z.4
  • 15
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. Proc IEEE Congr Evol Comput 1: 84-88.
    • (2000) Proc IEEE Congr Evol Comput , vol.1 , pp. 84-88
    • Eberhart, R.C.1    Shi, Y.2
  • 17
    • 84881612448 scopus 로고    scopus 로고
    • Network partition of switched industrial ethernet by using novel particle swarm optimization
    • Fei C, Ding F, Zhao X (2012) Network partition of switched industrial ethernet by using novel particle swarm optimization. Physics Procedia Part B 24: 1493-1499.
    • (2012) Physics Procedia Part B , vol.24 , pp. 1493-1499
    • Fei, C.1    Ding, F.2    Zhao, X.3
  • 21
    • 77950937212 scopus 로고    scopus 로고
    • Exponential particle swarm optimization approach for improving data clustering
    • Ghali I, El-Dessouki N, Mervat AN, Bakrawi L (2009) Exponential particle swarm optimization approach for improving data clustering. Int J Electr Electron Eng 3-4: 208-212.
    • (2009) Int J Electr Electron Eng , vol.3-4 , pp. 208-212
    • Ghali, I.1    El-Dessouki, N.2    Mervat, A.N.3    Bakrawi, L.4
  • 25
    • 40249103087 scopus 로고    scopus 로고
    • A dynamic inertia weight particle swarm optimization algorithm
    • Jiao B, Lian Z, Gu X (2008) A dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons Fractals 37: 698-705.
    • (2008) Chaos Solitons Fractals , vol.37 , pp. 698-705
    • Jiao, B.1    Lian, Z.2    Gu, X.3
  • 27
    • 84899047533 scopus 로고    scopus 로고
    • Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance
    • Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. Proc IEEE Congr Evol Comput 3: 1931-1938.
    • (1999) Proc IEEE Congr Evol Comput , vol.3 , pp. 1931-1938
    • Kennedy, J.1
  • 32
    • 84881616754 scopus 로고    scopus 로고
    • A new particle swarm optimization with dynamically adaptive inertia weight and hybrid mutation
    • Miaomiao W, Yuelin G (2010) A new particle swarm optimization with dynamically adaptive inertia weight and hybrid mutation. Comput Appl Softw 27(6): 70-72.
    • (2010) Comput Appl Softw , vol.27 , Issue.6 , pp. 70-72
    • Miaomiao, W.1    Yuelin, G.2
  • 33
    • 79954575354 scopus 로고    scopus 로고
    • A novel particle swarm optimization with adaptive inertia weight
    • Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization with adaptive inertia weight. Appl Soft Comput 11: 3658-3670.
    • (2011) Appl Soft Comput , vol.11 , pp. 3658-3670
    • Nickabadi, A.1    Ebadzadeh, M.M.2    Safabakhsh, R.3
  • 39
  • 42
    • 84869987687 scopus 로고    scopus 로고
    • Convergence analysis and parameter selection of PSO model with inertia weight
    • Sun X, Zhou DW, Zhang XW (2010) Convergence analysis and parameter selection of PSO model with inertia weight. Comput Eng Design 31: 4068-4071.
    • (2010) Comput Eng Design , vol.31 , pp. 4068-4071
    • Sun, X.1    Zhou, D.W.2    Zhang, X.W.3
  • 44
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: convergence analysis and parameter selection
    • Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6): 317-325.
    • (2003) Inf Process Lett , vol.85 , Issue.6 , pp. 317-325
    • Trelea, I.C.1
  • 45
    • 84881616752 scopus 로고    scopus 로고
    • A hybrid PSO with dynamic inertia weight and GA approach for discovering classification rule in data mining
    • Uma SM, Gandhi RK, Kirubakaran E (2012) A hybrid PSO with dynamic inertia weight and GA approach for discovering classification rule in data mining. Int J Comput Appl 40(17): 32-37.
    • (2012) Int J Comput Appl , vol.40 , Issue.17 , pp. 32-37
    • Uma, S.M.1    Gandhi, R.K.2    Kirubakaran, E.3
  • 46
    • 77956746068 scopus 로고    scopus 로고
    • Particle swarm optimization with various inertia weight variants for optimal power flow solution
    • Umapathy P, Venkataseshaiah C, Arumugam MS (2010) Particle swarm optimization with various inertia weight variants for optimal power flow solution. Discrete Dyn Nat Soc pp 1-15.
    • (2010) Discrete Dyn Nat Soc , pp. 1-15
    • Umapathy, P.1    Venkataseshaiah, C.2    Arumugam, M.S.3
  • 50
    • 77950995058 scopus 로고    scopus 로고
    • Particle swarm optimization with adaptive inertia weight and its application in optimization design
    • Wang XL, Yang Y, Zeng Q, Wang JQ (2010) Particle swarm optimization with adaptive inertia weight and its application in optimization design. Adv Mater Res 97-101: 3484-3488.
    • (2010) Adv Mater Res , vol.97-101 , pp. 3484-3488
    • Wang, X.L.1    Yang, Y.2    Zeng, Q.3    Wang, J.Q.4
  • 53
    • 34249112611 scopus 로고    scopus 로고
    • A modified particle swarm optimizer with dynamic adaption
    • Yang X, Yuan J, Mao H (2007) A modified particle swarm optimizer with dynamic adaption. Appl MathComput 189: 1205-1213.
    • (2007) Appl MathComput , vol.189 , pp. 1205-1213
    • Yang, X.1    Yuan, J.2    Mao, H.3
  • 55
    • 84881616225 scopus 로고    scopus 로고
    • Adaptive inertia weight particle swarm optimization, Artificial Intelligence and Soft Computing (ICAISC-2006)
    • Springer, Berlin
    • Zheng Q, Fan Y, Zhewen S, Yu W (2006) Adaptive inertia weight particle swarm optimization, Artificial Intelligence and Soft Computing (ICAISC-2006). In: Lecture notes in computer science, vol 4029. Springer, Berlin, pp 450-459.
    • (2006) In: Lecture notes in computer science , vol.4029 , pp. 450-459
    • Zheng, Q.1    Fan, Y.2    Zhewen, S.3    Yu, W.4
  • 56
    • 79958195183 scopus 로고    scopus 로고
    • Inertia weight adaption in particle swarm optimization algorithm. Advances in swarm intelligence
    • Zhou Z, Shi Y (2011) Inertia weight adaption in particle swarm optimization algorithm. Advances in swarm intelligence. In: Lecture notes in computer science, vol 6728, pp 71-79.
    • (2011) In: Lecture notes in computer science , vol.6728 , pp. 71-79
    • Zhou, Z.1    Shi, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.