-
1
-
-
79959993115
-
Ebola and Marburg haemorrhagic fever viruses: Major scientific advances, but a relatively minor public health threat for Africa
-
Leroy EM, Gonzalez J-P, Baize S. Ebola and Marburg haemorrhagic fever viruses: major scientific advances, but a relatively minor public health threat for Africa. Clin Microbiol Infect 2011; 17:964-976.
-
(2011)
Clin Microbiol Infect
, vol.17
, pp. 964-976
-
-
Leroy, E.M.1
Gonzalez, J.-P.2
Baize, S.3
-
2
-
-
28444494766
-
Fruit bats as reservoirs of Ebola virus
-
Leroy EM, Kumulungui B, Pourrut X et al. Fruit bats as reservoirs of Ebola virus. Nature 2005; 438:575-576.
-
(2005)
Nature
, vol.438
, pp. 575-576
-
-
Leroy, E.M.1
Kumulungui, B.2
Pourrut, X.3
-
3
-
-
70049115327
-
Isolation of genetically diverse Marburg viruses from Egyptian fruit bats
-
Towner JS, Amman BR, Sealy TK et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 2009; 5:e1000536.
-
(2009)
PLoS Pathog
, vol.5
-
-
Towner, J.S.1
Amman, B.R.2
Sealy, T.K.3
-
4
-
-
67650439331
-
Discovery of swine as a host for the reston Ebola virus
-
Barrette RW, Metwally SA, Rowland JM et al. Discovery of swine as a host for the reston Ebola virus. Science 2009; 325:204-206.
-
(2009)
Science
, vol.325
, pp. 204-206
-
-
Barrette, R.W.1
Metwally, S.A.2
Rowland, J.M.3
-
5
-
-
0029589329
-
GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases
-
Volchkov VE, Becker S, Volchkova VA et al. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 1995; 214:421-430.
-
(1995)
Virology
, vol.214
, pp. 421-430
-
-
Volchkov, V.E.1
Becker, S.2
Volchkova, V.A.3
-
6
-
-
0033035151
-
Detection and molecular characterization of Ebola viruses causing disease in human and nonhuman primates
-
Sanchez A, Ksiazek TG, Rollin PE et al. Detection and molecular characterization of Ebola viruses causing disease in human and nonhuman primates. J Infect Dis 1999; 179(Suppl 1):S164-169.
-
(1999)
J Infect Dis
, vol.179
, Issue.SUPPL. 1
-
-
Sanchez, A.1
Ksiazek, T.G.2
Rollin, P.E.3
-
7
-
-
0035831317
-
Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity
-
Volchkov VE, Volchkova VA, Muhlberger E et al. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 2001; 291:1965-1969.
-
(2001)
Science
, vol.291
, pp. 1965-1969
-
-
Volchkov, V.E.1
Volchkova, V.A.2
Muhlberger, E.3
-
8
-
-
0033831191
-
Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury
-
Yang ZY, Duckers HJ, Sullivan NJ et al. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 2000; 6:886-889.
-
(2000)
Nat Med
, vol.6
, pp. 886-889
-
-
Yang, Z.Y.1
Duckers, H.J.2
Sullivan, N.J.3
-
9
-
-
0036171135
-
Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence
-
Simmons G, Wool-Lewis RJ, Baribaud F et al. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Viro 2002; 76:2518-2528.
-
(2002)
J Viro
, vol.76
, pp. 2518-2528
-
-
Simmons, G.1
Wool-Lewis, R.J.2
Baribaud, F.3
-
10
-
-
33747065190
-
Modulation of virion incorporation of Ebolavirus glycoprotein: Effects on attachment, cellular entry and neutralization
-
Marzi A, Wegele A, Pohlmann S. Modulation of virion incorporation of Ebolavirus glycoprotein: Effects on attachment, cellular entry and neutralization. Virology 2006; 352:345-56.
-
(2006)
Virology
, vol.352
, pp. 345-356
-
-
Marzi, A.1
Wegele, A.2
Pohlmann, S.3
-
11
-
-
0032510732
-
Processing of the Ebola virus glycoprotein by the proprotein convertase furin
-
Volchkov VE, Feldmann H, Volchkova VA et al. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci USA 1998; 95:5762-5767.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 5762-5767
-
-
Volchkov, V.E.1
Feldmann, H.2
Volchkova, V.A.3
-
12
-
-
0034101994
-
Proteolytic processing of Marburg virus glycoprotein
-
Volchkov VE, Volchkova VA, Stroher U et al. Proteolytic processing of Marburg virus glycoprotein. Virology 2000; 268:1-6.
-
(2000)
Virology
, vol.268
, pp. 1-6
-
-
Volchkov, V.E.1
Volchkova, V.A.2
Stroher, U.3
-
13
-
-
0036893140
-
Covalent modifications of the ebola virus glycoprotein
-
Jeffers SA, Sanders DA, Sanchez A. Covalent modifications of the ebola virus glycoprotein. J Virol 2002; 76:12463-12472.
-
(2002)
J Virol
, vol.76
, pp. 12463-12472
-
-
Jeffers, S.A.1
Sanders, D.A.2
Sanchez, A.3
-
14
-
-
0028123337
-
Host cell proteases controlling virus pathogenicity
-
Klenk HD, Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol 1994; 2:39-43.
-
(1994)
Trends Microbiol
, vol.2
, pp. 39-43
-
-
Klenk, H.D.1
Garten, W.2
-
15
-
-
0032949982
-
Endoproteolytic processing of the ebola virus envelope glycoprotein: Cleavage is not required for function
-
Wool-Lewis RJ, Bates P. Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 1999; 73:1419-1426.
-
(1999)
J Virol
, vol.73
, pp. 1419-1426
-
-
Wool-Lewis, R.J.1
Bates, P.2
-
16
-
-
33947431606
-
Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates
-
Neumann G, Geisbert TW, Ebihara H et al. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J Virol 2007; 81:2995-2998.
-
(2007)
J Virol
, vol.81
, pp. 2995-2998
-
-
Neumann, G.1
Geisbert, T.W.2
Ebihara, H.3
-
17
-
-
0032214714
-
Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain
-
Weissenhorn W, Carfi A, Lee KH et al. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell 1998; 2:605-616.
-
(1998)
Mol Cell
, vol.2
, pp. 605-616
-
-
Weissenhorn, W.1
Carfi, A.2
Lee, K.H.3
-
18
-
-
45849108331
-
Structures and mechanisms of viral membrane fusion proteins
-
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins. Crit Rev Biochem Mol Biol 2008; 43(3):189-219.
-
(2008)
Crit Rev Biochem Mol Biol
, vol.43
, Issue.3
, pp. 189-219
-
-
White, J.M.1
Delos, S.E.2
Brecher, M.3
Schornberg, K.4
-
19
-
-
0026666240
-
Carbohydrate structure of Marburg virus glycoprotein
-
Geyer H, Will C, Feldmann H et al. Carbohydrate structure of Marburg virus glycoprotein. Glycobiology 1992; 2:299-312.
-
(1992)
Glycobiology
, vol.2
, pp. 299-312
-
-
Geyer, H.1
Will, C.2
Feldmann, H.3
-
20
-
-
47049107589
-
Structure of the ebola virus glycoprotein bound to an antibody from a human survivor
-
Lee JE, Fusco ML, Hessell AJ et al. Structure of the ebola virus glycoprotein bound to an antibody from a human survivor. Nature 2008; 454:177-182.
-
(2008)
Nature
, vol.454
, pp. 177-182
-
-
Lee, J.E.1
Fusco, M.L.2
Hessell, A.J.3
-
21
-
-
0038814328
-
Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha
-
Sinn PL, Hickey MA, Staber PD et al. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 2003; 77:5902-5910.
-
(2003)
J Virol
, vol.77
, pp. 5902-5910
-
-
Sinn, P.L.1
Hickey, M.A.2
Staber, P.D.3
-
22
-
-
16244391124
-
Comprehensive analysis of ebola virus GP1 in viral entry
-
Manicassamy B, Wang J, Jiang H et al. Comprehensive analysis of ebola virus GP1 in viral entry. J Virol 2005; 79:4793-4805.
-
(2005)
J Virol
, vol.79
, pp. 4793-4805
-
-
Manicassamy, B.1
Wang, J.2
Jiang, H.3
-
23
-
-
33744939483
-
Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor
-
Kuhn JH, Radoshitzky SR, Guth AC et al. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 2006; 281:15951-15958.
-
(2006)
J Biol Chem
, vol.281
, pp. 15951-15958
-
-
Kuhn, J.H.1
Radoshitzky, S.R.2
Guth, A.C.3
-
24
-
-
33749133853
-
Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry
-
Mpanju OM, Towner JS, Dover JE et al. Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res 2006; 121:205-14.
-
(2006)
Virus Res
, vol.121
, pp. 205-214
-
-
Mpanju, O.M.1
Towner, J.S.2
Dover, J.E.3
-
25
-
-
0031449064
-
A system for functional analysis of Ebola virus glycoprotein
-
Takada A, Robison C, Goto H et al. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 1997; 94:14764-14769.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 14764-14769
-
-
Takada, A.1
Robison, C.2
Goto, H.3
-
26
-
-
0031954296
-
Characterization of Ebola virus entry by using pseudotyped viruses: Identification of receptor-deficient cell lines
-
Wool-Lewis RJ, Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 1998; 72:3155-3160.
-
(1998)
J Virol
, vol.72
, pp. 3155-3160
-
-
Wool-Lewis, R.J.1
Bates, P.2
-
27
-
-
0034001723
-
Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses
-
Chan SY, Speck RF, Ma MC et al. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 2000; 74:4933-4937.
-
(2000)
J Virol
, vol.74
, pp. 4933-4937
-
-
Chan, S.Y.1
Speck, R.F.2
Ma, M.C.3
-
28
-
-
0035148629
-
Ebola Virus Glycoprotein: Proteolytic Processing, Acylation, Cell Tropism, and Detection of Neutralizing Antibodies
-
Ito H, Watanabe S, Takada A et al. Ebola Virus Glycoprotein: Proteolytic Processing, Acylation, Cell Tropism, and Detection of Neutralizing Antibodies. J Virol 2001; 75:1576-1580.
-
(2001)
J Virol
, vol.75
, pp. 1576-1580
-
-
Ito, H.1
Watanabe, S.2
Takada, A.3
-
29
-
-
0034006617
-
Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses
-
Geisbert TW, Hensley LE, Gibb TR et al. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Invest 2000; 80:171-186.
-
(2000)
Lab Invest
, vol.80
, pp. 171-186
-
-
Geisbert, T.W.1
Hensley, L.E.2
Gibb, T.R.3
-
30
-
-
0032615793
-
Molecular pathogenesis of filovirus infections: Role of macrophages and endothelial cells
-
Schnittler HJ, Feldmann H. Molecular pathogenesis of filovirus infections: role of macrophages and endothelial cells. Curr Top Microbiol Immunol 1999; 235:175-204.
-
(1999)
Curr Top Microbiol Immunol
, vol.235
, pp. 175-204
-
-
Schnittler, H.J.1
Feldmann, H.2
-
31
-
-
0031880805
-
Marburg and Ebola hemorrhagic fevers: Does the primary course of infection depend on the accessibility of organ-specific macrophages?
-
Schnittler HJ, Feldmann H. Marburg and Ebola hemorrhagic fevers: does the primary course of infection depend on the accessibility of organ-specific macrophages? Clin Infect Dis 1998; 27:404-406.
-
(1998)
Clin Infect Dis
, vol.27
, pp. 404-406
-
-
Schnittler, H.J.1
Feldmann, H.2
-
32
-
-
0034755148
-
Infection and activation of monocytes by Marburg and Ebola viruses
-
Stroher U, West E, Bugany H et al. Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 2001; 75:11025-11033.
-
(2001)
J Virol
, vol.75
, pp. 11025-11033
-
-
Stroher, U.1
West, E.2
Bugany, H.3
-
33
-
-
11144221586
-
Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: Involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha
-
Yonezawa A, Cavrois M, Greene WC. Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. J Virol 2005; 79:918-926.
-
(2005)
J Virol
, vol.79
, pp. 918-926
-
-
Yonezawa, A.1
Cavrois, M.2
Greene, W.C.3
-
34
-
-
0347122085
-
Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation
-
Bosio CM, Aman MJ, Grogan C et al. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 2003; 188:1630-1638.
-
(2003)
J Infect Dis
, vol.188
, pp. 1630-1638
-
-
Bosio, C.M.1
Aman, M.J.2
Grogan, C.3
-
35
-
-
79957780148
-
T-cell immunoglobulin and mucin domain 1 (tim- 1) is a receptor for zaire ebolavirus and lake victoria marburgvirus
-
Kondratowicz AS, Lennemann NJ, Sinn PL et al. T-cell immunoglobulin and mucin domain 1 (tim- 1) is a receptor for zaire ebolavirus and lake victoria marburgvirus. Proc Natl Acad Sci USA 2011; 108:8426-8431.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 8426-8431
-
-
Kondratowicz, A.S.1
Lennemann, N.J.2
Sinn, P.L.3
-
36
-
-
33749464038
-
Tyro3 family-mediated cell entry of Ebola and Marburg viruses
-
Shimojima M, Takada A, Ebihara H et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol 2006; 80:10109-10116.
-
(2006)
J Virol
, vol.80
, pp. 10109-10116
-
-
Shimojima, M.1
Takada, A.2
Ebihara, H.3
-
37
-
-
79957771189
-
Tyrosine kinase receptor axl enhances entry of zaire ebolavirus without direct interactions with the viral glycoprotein
-
Brindley MA, Hunt CL, Kondratowicz AS et al. Tyrosine kinase receptor axl enhances entry of zaire ebolavirus without direct interactions with the viral glycoprotein. Virology 2011; 415:83-94.
-
(2011)
Virology
, vol.415
, pp. 83-94
-
-
Brindley, M.A.1
Hunt, C.L.2
Kondratowicz, A.S.3
-
38
-
-
0035854387
-
Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses
-
Chan SY, Empig CJ, Welte FJ et al. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 2001; 106:117-126.
-
(2001)
Cell
, vol.106
, pp. 117-126
-
-
Chan, S.Y.1
Empig, C.J.2
Welte, F.J.3
-
39
-
-
0344736794
-
Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection
-
Simmons G, Rennekamp AJ, Chai N et al. Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol 2003; 77:13433-13438.
-
(2003)
J Virol
, vol.77
, pp. 13433-13438
-
-
Simmons, G.1
Rennekamp, A.J.2
Chai, N.3
-
40
-
-
0034610176
-
Downregulation of beta1 integrins by Ebola virus glycoprotein: Implication for virus entry
-
Takada A, Watanabe S, Ito H et al. Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 2000; 278:20-26.
-
(2000)
Virology
, vol.278
, pp. 20-26
-
-
Takada, A.1
Watanabe, S.2
Ito, H.3
-
41
-
-
0033780046
-
Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding
-
O'Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 2000; 74:10074-10080.
-
(2000)
J Virol
, vol.74
, pp. 10074-10080
-
-
O'Doherty, U.1
Swiggard, W.J.2
Malim, M.H.3
-
42
-
-
0034664758
-
DC-SIGN; A related gene, DC-SIGNR; And CD23 form a cluster on 19p13
-
Soilleux EJ, Barten R, Trowsdale J. DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J Immunol 2000; 165:2937-2942.
-
(2000)
J Immunol
, vol.165
, pp. 2937-2942
-
-
Soilleux, E.J.1
Barten, R.2
Trowsdale, J.3
-
43
-
-
2442473249
-
Characterization of a novel C-type lectin-like gene, LSECtin: Demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node
-
Liu W, Tang L, Zhang G et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J Biol Chem 2004; 279:18748-18758.
-
(2004)
J Biol Chem
, vol.279
, pp. 18748-18758
-
-
Liu, W.1
Tang, L.2
Zhang, G.3
-
44
-
-
0034304945
-
DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking
-
Geijtenbeek TB, Krooshoop DJ, Bleijs DA et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 2000; 1:353-357.
-
(2000)
Nat Immunol
, vol.1
, pp. 353-357
-
-
Geijtenbeek, T.B.1
Krooshoop, D.J.2
Bleijs, D.A.3
-
45
-
-
0034598934
-
Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses
-
Geijtenbeek TB, Torensma R, van Vliet SJ et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100:575-585.
-
(2000)
Cell
, vol.100
, pp. 575-585
-
-
Geijtenbeek, T.B.1
Torensma, R.2
Van Vliet, S.J.3
-
46
-
-
0026756506
-
Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120
-
Curtis BM, Scharnowske S, Watson AJ. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci USA 1992; 89:8356-8360.
-
(1992)
Proc Natl Acad Sci USA
, vol.89
, pp. 8356-8360
-
-
Curtis, B.M.1
Scharnowske, S.2
Watson, A.J.3
-
47
-
-
0034598905
-
DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells
-
Geijtenbeek TB, Kwon DS, Torensma R et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100:587-597.
-
(2000)
Cell
, vol.100
, pp. 587-597
-
-
Geijtenbeek, T.B.1
Kwon, D.S.2
Torensma, R.3
-
48
-
-
0037379186
-
Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR
-
Pohlmann S, Zhang J, Baribaud F et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 2003; 77:4070-4080.
-
(2003)
J Virol
, vol.77
, pp. 4070-4080
-
-
Pohlmann, S.1
Zhang, J.2
Baribaud, F.3
-
49
-
-
0344642934
-
DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells
-
Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197:823-829.
-
(2003)
J Exp Med
, vol.197
, pp. 823-829
-
-
Tassaneetrithep, B.1
Burgess, T.H.2
Granelli-Piperno, A.3
-
50
-
-
0037183983
-
Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes
-
Colmenares M, Puig-Kroger A, Pello OM et al. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J Biol Chem 2002; 277:36766-36769.
-
(2002)
J Biol Chem
, vol.277
, pp. 36766-36769
-
-
Colmenares, M.1
Puig-Kroger, A.2
Pello, O.M.3
-
51
-
-
0037237593
-
Mycobacteria target DC-SIGN to suppress dendritic cell function
-
Geijtenbeek TB, Van Vliet SJ, Koppel EA et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 2003; 197:7-17.
-
(2003)
J Exp Med
, vol.197
, pp. 7-17
-
-
Geijtenbeek, T.B.1
Van Vliet, S.J.2
Koppel, E.A.3
-
52
-
-
0037240748
-
DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells
-
Tailleux L, Schwartz O, Herrmann JL et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 2003; 197:121-127.
-
(2003)
J Exp Med
, vol.197
, pp. 121-127
-
-
Tailleux, L.1
Schwartz, O.2
Herrmann, J.L.3
-
53
-
-
0037227457
-
DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells
-
Simmons G, Reeves JD, Grogan CC et al. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 2003; 305:115-123.
-
(2003)
Virology
, vol.305
, pp. 115-123
-
-
Simmons, G.1
Reeves, J.D.2
Grogan, C.C.3
-
54
-
-
0028194854
-
Glycosidase inhibitors in study of glycoconjugates
-
Kaushal GP, Elbein AD. Glycosidase inhibitors in study of glycoconjugates. Methods Enzymol 1994; 230:316-329.
-
(1994)
Methods Enzymol
, vol.230
, pp. 316-329
-
-
Kaushal, G.P.1
Elbein, A.D.2
-
55
-
-
0037227929
-
Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR
-
Lin G, Simmons G, Pohlmann S et al. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol 2003; 77:1337-1346.
-
(2003)
J Virol
, vol.77
, pp. 1337-1346
-
-
Lin, G.1
Simmons, G.2
Pohlmann, S.3
-
56
-
-
0035800757
-
A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands
-
Mitchell DA, Fadden AJ, Drickamer K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 2001; 276:28939-28945.
-
(2001)
J Biol Chem
, vol.276
, pp. 28939-28945
-
-
Mitchell, D.A.1
Fadden, A.J.2
Drickamer, K.3
-
57
-
-
31144445030
-
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection
-
Davis CW, Nguyen HY, Hanna SL et al. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 2006; 80:1290-1301.
-
(2006)
J Virol
, vol.80
, pp. 1290-1301
-
-
Davis, C.W.1
Nguyen, H.Y.2
Hanna, S.L.3
-
58
-
-
0028246971
-
Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein
-
Feldmann H, Nichol ST, Klenk HD et al. Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein. Virology 1994; 199:469-473.
-
(1994)
Virology
, vol.199
, pp. 469-473
-
-
Feldmann, H.1
Nichol, S.T.2
Klenk, H.D.3
-
59
-
-
38049170734
-
A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans
-
Powlesland AS, Fisch T, Taylor ME et al. A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans. J Biol Chem 2008; 283(1):593-602.
-
(2008)
J Biol Chem
, vol.283
, Issue.1
, pp. 593-602
-
-
Powlesland, A.S.1
Fisch, T.2
Taylor, M.E.3
-
60
-
-
0036278649
-
C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans
-
Alvarez CP, Lasala F, Carrillo J et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 2002; 76:6841-6844.
-
(2002)
J Virol
, vol.76
, pp. 6841-6844
-
-
Alvarez, C.P.1
Lasala, F.2
Carrillo, J.3
-
61
-
-
6344261967
-
DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus
-
Marzi A, Gramberg T, Simmons G et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 2004; 78:12090-12095.
-
(2004)
J Virol
, vol.78
, pp. 12090-12095
-
-
Marzi, A.1
Gramberg, T.2
Simmons, G.3
-
62
-
-
24944536732
-
LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus
-
Gramberg T, Hofmann H, Moller P et al. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 2005; 340:224-36.
-
(2005)
Virology
, vol.340
, pp. 224-236
-
-
Gramberg, T.1
Hofmann, H.2
Moller, P.3
-
63
-
-
0036521487
-
Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro
-
Soilleux EJ, Morris LS, Leslie G et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 2002; 71:445-457.
-
(2002)
J Leukoc Biol
, vol.71
, pp. 445-457
-
-
Soilleux, E.J.1
Morris, L.S.2
Leslie, G.3
-
64
-
-
0035663209
-
Placental expression of DC-SIGN
-
may mediate intrauterine vertical transmission of HIV
-
Soilleux EJ, Morris LS, Lee B et al. Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J Pathol 2001; 195:586-592.
-
(2001)
J Pathol
, vol.195
, pp. 586-592
-
-
Soilleux, E.J.1
Morris, L.S.2
Lee, B.3
-
65
-
-
14744302920
-
Characterization of human peritoneal dendritic cell precursors and their involvement in peritonitis
-
McCully ML, Chau TA, Luke P et al. Characterization of human peritoneal dendritic cell precursors and their involvement in peritonitis. Clin Exp Immunol 2005; 139:513-525.
-
(2005)
Clin Exp Immunol
, vol.139
, pp. 513-525
-
-
McCully, M.L.1
Chau, T.A.2
Luke, P.3
-
66
-
-
33745728738
-
Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: A role for capturing hepatitis C virus particles
-
Lai WK, Sun PJ, Zhang J et al. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am J Pathol 2006; 169:200-208.
-
(2006)
Am J Pathol
, vol.169
, pp. 200-208
-
-
Lai, W.K.1
Sun, P.J.2
Zhang, J.3
-
67
-
-
0035911220
-
A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection
-
Bashirova AA, Geijtenbeek TB, van Duijnhoven GC et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 2001; 193:671-678.
-
(2001)
J Exp Med
, vol.193
, pp. 671-678
-
-
Bashirova, A.A.1
Geijtenbeek, T.B.2
Van Duijnhoven, G.C.3
-
68
-
-
0028872697
-
The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus
-
Becker S, Spiess M, Klenk HD. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J Gen Virol 1995; 76:393-399.
-
(1995)
J Gen Virol
, vol.76
, pp. 393-399
-
-
Becker, S.1
Spiess, M.2
Klenk, H.D.3
-
69
-
-
0034697981
-
Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor
-
Meier M, Bider MD, Malashkevich VN et al. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. J Mol Biol 2000; 300:857-865.
-
(2000)
J Mol Biol
, vol.300
, pp. 857-865
-
-
Meier, M.1
Bider, M.D.2
Malashkevich, V.N.3
-
70
-
-
12144290776
-
Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry
-
Takada A, Fujioka K, Tsuiji M et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol 2004; 78:2943-2947.
-
(2004)
J Virol
, vol.78
, pp. 2943-2947
-
-
Takada, A.1
Fujioka, K.2
Tsuiji, M.3
-
71
-
-
0036298810
-
Dissecting virus entry via endocytosis
-
Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. J Gen Virol 2002; 83:1535-1545.
-
(2002)
J Gen Virol
, vol.83
, pp. 1535-1545
-
-
Sieczkarski, S.B.1
Whittaker, G.R.2
-
72
-
-
0036239229
-
Association of the caveola vesicular system with cellular entry by filoviruses
-
Empig CJ, Goldsmith MA. Association of the caveola vesicular system with cellular entry by filoviruses. J Virol 2002; 76:5266-5270.
-
(2002)
J Virol
, vol.76
, pp. 5266-5270
-
-
Empig, C.J.1
Goldsmith, M.A.2
-
73
-
-
0037018099
-
Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses
-
Bavari S, Bosio CM, Wiegand E et al. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002; 195:593-602.
-
(2002)
J Exp Med
, vol.195
, pp. 593-602
-
-
Bavari, S.1
Bosio, C.M.2
Wiegand, E.3
-
74
-
-
77950934528
-
Ebola virus uses clathrin-mediated endocytosis as an entry pathway
-
Bhattacharyya S, Warfield KL, Ruthel G et al. Ebola virus uses clathrin-mediated endocytosis as an entry pathway. Virology 2010; 401:18-28.
-
(2010)
Virology
, vol.401
, pp. 18-28
-
-
Bhattacharyya, S.1
Warfield, K.L.2
Ruthel, G.3
-
75
-
-
78149301316
-
Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes
-
Saeed MF, Kolokoltsov AA, Albrecht T et al. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 2010; 6:e1001110.
-
(2010)
PLoS Pathog
, vol.6
-
-
Saeed, M.F.1
Kolokoltsov, A.A.2
Albrecht, T.3
-
76
-
-
78149355646
-
Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner
-
Nanbo A, Imai, M, Watanabe S et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 2010; 6:e1001121.
-
(2010)
PLoS Pathog
, vol.6
-
-
Nanbo, A.1
Imai, M.2
Watanabe, S.3
-
77
-
-
80054774353
-
Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis
-
Aleksandrowicz P, Marzi A, Biedenkopf N et al. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis 2011; 204:S957-S967.
-
(2011)
J Infect Dis
, vol.204
-
-
Aleksandrowicz, P.1
Marzi, A.2
Biedenkopf, N.3
-
78
-
-
78650045778
-
The tyro3 receptor kinase axl enhances macropinocytosis of zaire ebolavirus
-
Hunt CL, Kolokoltsov AA, Davey RA et al. The tyro3 receptor kinase axl enhances macropinocytosis of zaire ebolavirus. J Virol 2011; 85:334-347.
-
(2011)
J Virol
, vol.85
, pp. 334-347
-
-
Hunt, C.L.1
Kolokoltsov, A.A.2
Davey, R.A.3
-
79
-
-
0034924823
-
Mechanisms of viral membrane fusion and its inhibition
-
Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 2001;70:777-810.
-
(2001)
Annu Rev Biochem
, vol.70
, pp. 777-810
-
-
Eckert, D.M.1
Kim, P.S.2
-
80
-
-
0033697734
-
Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein
-
Mothes W, Boerger AL, Narayan S et al. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 2000; 103(4):679-689.
-
(2000)
Cell
, vol.103
, Issue.4
, pp. 679-689
-
-
Mothes, W.1
Boerger, A.L.2
Narayan, S.3
-
81
-
-
33644745239
-
Detection of cell-cell fusion mediated by Ebola virus glycoproteins
-
Bar S, Takada A, Kawaoka Y et al. Detection of cell-cell fusion mediated by Ebola virus glycoproteins. J Virol 2006; 80(6):2815-2822.
-
(2006)
J Virol
, vol.80
, Issue.6
, pp. 2815-2822
-
-
Bar, S.1
Takada, A.2
Kawaoka, Y.3
-
82
-
-
0032849336
-
Mutational analysis of the putative fusion domain of Ebola virus glycoprotein
-
Ito H, Watanabe S, Sanchez A et al. Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 1999; 73(10):8907-8912.
-
(1999)
J Virol
, vol.73
, Issue.10
, pp. 8907-8912
-
-
Ito, H.1
Watanabe, S.2
Sanchez, A.3
-
83
-
-
1642488368
-
Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry
-
Simmons G, Reeves JD, Rennekamp AJ et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004; 101(12):4240-4245.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, Issue.12
, pp. 4240-4245
-
-
Simmons, G.1
Reeves, J.D.2
Rennekamp, A.J.3
-
84
-
-
19144365133
-
Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection
-
Chandran K, Sullivan NJ, Felbor U et al. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 2005; 308(5728):1643-1645.
-
(2005)
Science
, vol.308
, Issue.5728
, pp. 1643-1645
-
-
Chandran, K.1
Sullivan, N.J.2
Felbor, U.3
-
85
-
-
33645788357
-
Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein
-
Schornberg K, Matsuyama S, Kabsch K et al. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 2006; 80(8):4174-4178.
-
(2006)
J Virol
, vol.80
, Issue.8
, pp. 4174-4178
-
-
Schornberg, K.1
Matsuyama, S.2
Kabsch, K.3
-
86
-
-
84863230082
-
Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences
-
Misasi J, Chandran K, Yang JY et al. Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol 2012; 86(6):3284-3292.
-
(2012)
J Virol
, vol.86
, Issue.6
, pp. 3284-3292
-
-
Misasi, J.1
Chandran, K.2
Yang, J.Y.3
-
87
-
-
84856225495
-
Cathepsins B and L activate ebola but not marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression
-
Gnirss K, Kuhl A, Karsten C et al. Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology 2012; 424(1):3-10.
-
(2012)
Virology
, vol.424
, Issue.1
, pp. 3-10
-
-
Gnirss, K.1
Kuhl, A.2
Karsten, C.3
-
88
-
-
0037025342
-
Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells
-
Ebert DH, Deussing J, Peters C et al. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem 2002; 277(27):24609-24617.
-
(2002)
J Biol Chem
, vol.277
, Issue.27
, pp. 24609-24617
-
-
Ebert, D.H.1
Deussing, J.2
Peters, C.3
-
89
-
-
23844448345
-
Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry
-
Simmons G, Gosalia DN, Rennekamp AJ et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102(33):11876-11881.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, Issue.33
, pp. 11876-11881
-
-
Simmons, G.1
Gosalia, D.N.2
Rennekamp, A.J.3
-
90
-
-
33744906756
-
Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry
-
Qiu Z, Hingley ST, Simmons G et al. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 2006; 80(12):5768-5776.
-
(2006)
J Virol
, vol.80
, Issue.12
, pp. 5768-5776
-
-
Qiu, Z.1
Hingley, S.T.2
Simmons, G.3
-
91
-
-
80052851832
-
Ebola virus entry requires the cholesterol transporter Niemann-Pick C1
-
Carette JE, Raaben M, Wong AC et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 2011; 477(7364):340-343.
-
(2011)
Nature
, vol.477
, Issue.7364
, pp. 340-343
-
-
Carette, J.E.1
Raaben, M.2
Wong, A.C.3
-
92
-
-
80052868218
-
Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection
-
Cote M, Misasi J, Ren T et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 2011; 477(7364):344-348.
-
(2011)
Nature
, vol.477
, Issue.7364
, pp. 344-348
-
-
Cote, M.1
Misasi, J.2
Ren, T.3
-
93
-
-
84859907529
-
Ebola virus entry requires the host-programmed recognition of an intracellular receptor
-
Miller EH, Obernosterer G, Raaben M et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 2012; 31(8):1947-1960.
-
(2012)
EMBO J
, vol.31
, Issue.8
, pp. 1947-1960
-
-
Miller, E.H.1
Obernosterer, G.2
Raaben, M.3
|