메뉴 건너뛰기




Volumn , Issue , 2013, Pages 123-134

Efficient event detection by exploiting crowds

Author keywords

Clustering; Community based participatory sensing; Distributed systems; Event detection; Mobile systems; Sampling

Indexed keywords

CLUSTERING; COMMUNITY-BASED PARTICIPATORY SENSING; DISTRIBUTED SYSTEMS; EVENT DETECTION; MOBILE SYSTEMS;

EID: 84881125308     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2488222.2488264     Document Type: Conference Paper
Times cited : (10)

References (38)
  • 1
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • Berlin, Germany, Sep
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In VLDB, Berlin, Germany, Sep 2003.
    • (2003) VLDB
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 2
    • 46649104473 scopus 로고    scopus 로고
    • Adaptive-size reservoir sampling over data streams
    • Canada, July
    • M. Al-Kateb, B. S. Lee, and X. S. Wang. Adaptive-size reservoir sampling over data streams. In SSDBM, Banff, Canada, July 2007.
    • (2007) SSDBM, Banff
    • Al-Kateb, M.1    Lee, B.S.2    Wang, X.S.3
  • 3
    • 48649104410 scopus 로고    scopus 로고
    • Phenomenon-aware stream query processing
    • Mannheim, Germany, May
    • M. H. Ali, M. F. Mokbel, and W. G. Aref. Phenomenon-aware stream query processing. In MDM, pages 8-15, Mannheim, Germany, May 2007.
    • (2007) MDM , pp. 8-15
    • Ali, M.H.1    Mokbel, M.F.2    Aref, W.G.3
  • 4
    • 0347172110 scopus 로고    scopus 로고
    • Optics: Ordering points to identify the clustering structure
    • Philadelphia, PA, June
    • M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering points to identify the clustering structure. In SIGMOD, Philadelphia, PA, June 1999.
    • (1999) SIGMOD
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.-P.3    Sander, J.4
  • 5
    • 10644244988 scopus 로고    scopus 로고
    • Sampling from a moving window over streaming data
    • San Francisco, CA, January
    • B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. In SODA, San Francisco, CA, January 2002.
    • (2002) SODA
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 7
    • 84874338369 scopus 로고    scopus 로고
    • Radar: Adaptive rate allocation in distributed stream processing systems under bursty workloads
    • Irvine, CA, October
    • I. Boutsis and V. Kalogeraki. Radar: Adaptive rate allocation in distributed stream processing systems under bursty workloads. In SRDS, Irvine, CA, October 2012.
    • (2012) SRDS
    • Boutsis, I.1    Kalogeraki, V.2
  • 8
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • Bethesda, MD, April
    • F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving data stream with noise. In SIAM, Bethesda, MD, April 2006.
    • (2006) SIAM
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 9
    • 36849092449 scopus 로고    scopus 로고
    • Density-based clustering for real-time stream data
    • San Jose, CA, Aug
    • Y. Chen and L. Tu. Density-based clustering for real-time stream data. In KDD, San Jose, CA, Aug 2007.
    • (2007) KDD
    • Chen, Y.1    Tu, L.2
  • 13
    • 77954992140 scopus 로고    scopus 로고
    • Greengps: A participatory sensing fuel-efficient maps application
    • San Francisco, California, USA, June
    • R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher. Greengps: a participatory sensing fuel-efficient maps application. In MobiSys, San Francisco, California, USA, June 2010.
    • (2010) MobiSys
    • Ganti, R.K.1    Pham, N.2    Ahmadi, H.3    Nangia, S.4    Abdelzaher, T.F.5
  • 14
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • Seattle, Washington, USA, June
    • S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases. In SIGMOD, pages 73-84, Seattle, Washington, USA, June 1998.
    • (1998) SIGMOD , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 16
    • 0001138328 scopus 로고
    • Algorithm AS 136: A K-means clustering algorithm
    • J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics, 28(1): 100-108, 1979.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 18
    • 34547988121 scopus 로고    scopus 로고
    • Continuous clustering of moving objects
    • September
    • C. S. Jensen, D. Lin, and B. C. Ooi. Continuous clustering of moving objects. IEEE Trans. on Knowl. and Data Eng., 19(9): 1161-1174, September 2007.
    • (2007) IEEE Trans. on Knowl. and Data Eng. , vol.19 , Issue.9 , pp. 1161-1174
    • Jensen, C.S.1    Lin, D.2    Ooi, B.C.3
  • 19
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • S. Johnson. Hierarchical clustering schemes. Psychometrika, 32: 241-254, 1967.
    • (1967) Psychometrika , vol.32 , pp. 241-254
    • Johnson, S.1
  • 21
    • 77953848320 scopus 로고    scopus 로고
    • Watchdog: Confident event detection in heterogeneous sensor networks
    • Stockholm, Sweden, April
    • M. Keally, G. Zhou, and G. Xing. Watchdog: Confident event detection in heterogeneous sensor networks. In RTAS, pages 279-288, Stockholm, Sweden, April 2010.
    • (2010) RTAS , pp. 279-288
    • Keally, M.1    Zhou, G.2    Xing, G.3
  • 23
    • 80052749496 scopus 로고    scopus 로고
    • Swarm: Mining relaxed temporal moving object clusters
    • September
    • Z. Li, B. Ding, J. Han, and R. Kays. Swarm: mining relaxed temporal moving object clusters. Proc. VLDB Endow., 3(1-2):723-734, September 2010.
    • (2010) Proc. VLDB Endow. , vol.3 , Issue.1-2 , pp. 723-734
    • Li, Z.1    Ding, B.2    Han, J.3    Kays, R.4
  • 24
    • 52649154022 scopus 로고    scopus 로고
    • Region sampling: Continuous adaptive sampling on sensor networks
    • Canćun, México, April
    • S. Lin, B. Arai, D. Gunopulos, and G. Das. Region sampling: Continuous adaptive sampling on sensor networks. In ICDE, Canćun, México, April 2008.
    • (2008) ICDE
    • Lin, S.1    Arai, B.2    Gunopulos, D.3    Das, G.4
  • 25
    • 48649083441 scopus 로고    scopus 로고
    • Scuba: Scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects
    • Munich, Germany, March
    • R. V. Nehme and E. A. Rundensteiner. Scuba: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In EDBT, Munich, Germany, March 2006.
    • (2006) EDBT
    • Nehme, R.V.1    Rundensteiner, E.A.2
  • 26
    • 48349091659 scopus 로고    scopus 로고
    • Edacluster: An evolutionary density and grid-based clustering algorithm
    • Rio de Janeiro, Brazil, Oct
    • C. S. d. Oliveira, P. I. Godinho, A. S. G. Meiguins, B. S. Meiguins, and A. A. Freitas. Edacluster: an evolutionary density and grid-based clustering algorithm. In ISDA, Rio de Janeiro, Brazil, Oct 2007.
    • (2007) ISDA
    • Oliveira, C.S.D.1    Godinho, P.I.2    Meiguins, A.S.G.3    Meiguins, B.S.4    Freitas, A.A.5
  • 27
    • 80051920895 scopus 로고    scopus 로고
    • Rapid detection of rare geospatial events: Earthquake warning applications
    • New York, NY, July
    • M. Olson, A. H. Liu, M. Faulkner, and K. M. Chandy. Rapid detection of rare geospatial events: earthquake warning applications. In DEBS, New York, NY, July 2011.
    • (2011) DEBS
    • Olson, M.1    Liu, A.H.2    Faulkner, M.3    Chandy, K.M.4
  • 28
    • 0040438433 scopus 로고    scopus 로고
    • Density biased sampling: An improved method for data mining and clustering
    • Dallas, TX, May
    • C. R. Palmer and C. Faloutsos. Density biased sampling: an improved method for data mining and clustering. In SIGMOD, Dallas, TX, May 2000.
    • (2000) SIGMOD
    • Palmer, C.R.1    Faloutsos, C.2
  • 29
    • 56349158295 scopus 로고    scopus 로고
    • A simple and fast algorithm for k-medoids clustering
    • Mar.
    • H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl., 36(2): 3336-3341, Mar. 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3336-3341
    • Park, H.-S.1    Jun, C.-H.2
  • 30
    • 84881173561 scopus 로고    scopus 로고
    • PlanetLab Consortium. http://www.planet-lab.org, 2004.
    • (2004)
  • 31
    • 34548782105 scopus 로고    scopus 로고
    • Synergy: Sharing-aware component composition for distributed stream processing systems
    • Melbourne, Australia, Nov.
    • T. Repantis, X. Gu, and V. Kalogeraki. Synergy: Sharing-aware component composition for distributed stream processing systems. In Middleware, Melbourne, Australia, Nov. 2006.
    • (2006) Middleware
    • Repantis, T.1    Gu, X.2    Kalogeraki, V.3
  • 32
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm gdbscan and its applications
    • June
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Min. Knowl. Discov., 2(2): 169-194, June 1998.
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 34
    • 38949196708 scopus 로고    scopus 로고
    • Distributed real-time detection and tracking of homogeneous regions in sensor networks
    • Rio de Janeiro, Brazil, Dec
    • S. Subramaniam, V. Kalogeraki, and T. Palpanas. Distributed real-time detection and tracking of homogeneous regions in sensor networks. In RTSS, Rio de Janeiro, Brazil, Dec 2006.
    • (2006) RTSS
    • Subramaniam, S.1    Kalogeraki, V.2    Palpanas, T.3
  • 37
    • 80052688627 scopus 로고    scopus 로고
    • Driving with knowledge from the physical world
    • San Diego, California, USA, August
    • J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical world. In KDD, San Diego, California, USA, August 2011.
    • (2011) KDD
    • Yuan, J.1    Zheng, Y.2    Xie, X.3    Sun, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.