메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Adaptive-size reservoir sampling over data streams

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE ALGORITHMS; ADMINISTRATIVE DATA PROCESSING; BOOLEAN FUNCTIONS; DATA MINING; DATABASE SYSTEMS; DETECTORS; LEARNING ALGORITHMS; MANAGEMENT INFORMATION SYSTEMS; RESERVOIRS (WATER); RIVERS; SAMPLING; SENSOR NETWORKS; SENSORS; STATISTICAL METHODS; STATISTICS; WIRELESS SENSOR NETWORKS;

EID: 46649104473     PISSN: 10993371     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SSDBM.2007.29     Document Type: Conference Paper
Times cited : (38)

References (60)
  • 1
    • 84870655865 scopus 로고    scopus 로고
    • Intel lab data, http://berkeley.intel-research.net/labdata/.
    • Intel lab data
  • 2
    • 62949179723 scopus 로고    scopus 로고
    • home
    • Traderbot home page, http://www.traderbot.com.
    • Traderbot
  • 4
    • 46649105497 scopus 로고    scopus 로고
    • Reservoir sampling over memory-limited stream joins
    • M. Al-Kateb, B. S. Lee, and X. S. Wang. Reservoir sampling over memory-limited stream joins. In SSDBM '07.
    • SSDBM '07
    • Al-Kateb, M.1    Lee, B.S.2    Wang, X.S.3
  • 6
    • 2442427286 scopus 로고    scopus 로고
    • Load shedding for aggregation queries over data streams
    • B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over data streams. In ICDE '04, pages 350-361.
    • ICDE '04 , pp. 350-361
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 7
    • 10644244988 scopus 로고    scopus 로고
    • Sampling from a moving window over streaming data
    • B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. In SODA '02, pages 633-634.
    • SODA '02 , pp. 633-634
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 9
    • 84957005239 scopus 로고    scopus 로고
    • Memoryadaptive scheduling for large query execution
    • L. Bouganim, O. Kapitskaia, and P. Valduriez. Memoryadaptive scheduling for large query execution. In CIKM '98, pages 105-115.
    • CIKM '98 , pp. 105-115
    • Bouganim, L.1    Kapitskaia, O.2    Valduriez, P.3
  • 10
    • 33749584309 scopus 로고    scopus 로고
    • Techniques for warehousing of sample data
    • P. G. Brown and P. J. Haas. Techniques for warehousing of sample data. In ICDE '06, pages 6-17.
    • ICDE '06 , pp. 6-17
    • Brown, P.G.1    Haas, P.J.2
  • 11
    • 46649091105 scopus 로고    scopus 로고
    • Data collection in delay tolerant mobile sensor networks using SCAR
    • M. M. Cecilia Mascolo and B. Pasztor. Data collection in delay tolerant mobile sensor networks using SCAR. In SenSys '06.
    • SenSys '06
    • Cecilia Mascolo, M.M.1    Pasztor, B.2
  • 12
    • 34247335907 scopus 로고    scopus 로고
    • Sink mobility protocols for data collection in wireless sensor networks
    • I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas. Sink mobility protocols for data collection in wireless sensor networks. In MobiWac '06, pages 52-59.
    • MobiWac '06 , pp. 52-59
    • Chatzigiannakis, I.1    Kinalis, A.2    Nikoletseas, S.3
  • 13
    • 0034818751 scopus 로고    scopus 로고
    • A robust, optimization-based approach for approximate answering of aggregate queries
    • S. Chaudhuri, G. Das, and V. Narasayya. A robust, optimization-based approach for approximate answering of aggregate queries. In SIGMOD '01, pages 295-306.
    • SIGMOD '01 , pp. 295-306
    • Chaudhuri, S.1    Das, G.2    Narasayya, V.3
  • 15
    • 0021939154 scopus 로고    scopus 로고
    • A probabilistic algorithm for the post office problem
    • K. Clarkson. A probabilistic algorithm for the post office problem. InSTOC '85, pages 175-184.
    • STOC '85 , pp. 175-184
    • Clarkson, K.1
  • 16
    • 85033220215 scopus 로고    scopus 로고
    • Applications of random sampling in computational geometry, ii
    • K. L. Clarkson. Applications of random sampling in computational geometry, ii. In SCG '88, pages 1-11.
    • SCG '88 , pp. 1-11
    • Clarkson, K.L.1
  • 18
    • 26444530098 scopus 로고    scopus 로고
    • A. S. D. Jea and M. Srivastava. Multiple controlled mobile elements (data mules) for data collection in sensor networks. In DCOSS '05, pages pages 244-257.
    • A. S. D. Jea and M. Srivastava. Multiple controlled mobile elements (data mules) for data collection in sensor networks. In DCOSS '05, pages pages 244-257.
  • 19
    • 0008703778 scopus 로고    scopus 로고
    • ICICLES: Selftuning samples for approximate query answering
    • V. Ganti, M.-L. Lee, and R. Ramakrishnan. ICICLES: Selftuning samples for approximate query answering. In VLDB '02, pages 176-187.
    • VLDB '02 , pp. 176-187
    • Ganti, V.1    Lee, M.-L.2    Ramakrishnan, R.3
  • 20
    • 35448945510 scopus 로고    scopus 로고
    • A dip in the reservoir: Maintaining sample synopses of evolving datasets
    • R. Gemulla, W. Lehner, and P. J. Haas. A dip in the reservoir: Maintaining sample synopses of evolving datasets. In VLDB '06, pages 595-606.
    • VLDB '06 , pp. 595-606
    • Gemulla, R.1    Lehner, W.2    Haas, P.J.3
  • 21
    • 84944323337 scopus 로고    scopus 로고
    • Distinct sampling for highly-accurate answers to distinct values queries and event reports
    • P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries and event reports. In VLDB '01, pages 541-550.
    • VLDB '01 , pp. 541-550
    • Gibbons, P.B.1
  • 22
    • 0032092365 scopus 로고    scopus 로고
    • New sampling-based summary statistics for improving approximate query answers
    • P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving approximate query answers. In SIGMOD '98, pages 331-342.
    • SIGMOD '98 , pp. 331-342
    • Gibbons, P.B.1    Matias, Y.2
  • 23
    • 84994181935 scopus 로고    scopus 로고
    • Fast incremental maintenance of approximate histograms
    • P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate histograms. In VLDB '97, pages 466-475.
    • VLDB '97 , pp. 466-475
    • Gibbons, P.B.1    Matias, Y.2    Poosala, V.3
  • 24
    • 46649105458 scopus 로고    scopus 로고
    • N. M. Greenwood, P.E. A Guide to Chi-Squared Testing. John Wiley and sons, New York., 1996.
    • N. M. Greenwood, P.E. A Guide to Chi-Squared Testing. John Wiley and sons, New York., 1996.
  • 25
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for large databases. In SIGMOD '98, pages 73-84.
    • SIGMOD '98 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 26
    • 77954434696 scopus 로고    scopus 로고
    • Adaptive sampling for sensor networks
    • A. Jain and E. Y Chang. Adaptive sampling for sensor networks. In DMSN '04, pages 10-16.
    • DMSN '04 , pp. 10-16
    • Jain, A.1    Chang, E.Y.2
  • 27
    • 33646575292 scopus 로고    scopus 로고
    • Exploiting mobility for energy efficient data collection in wireless sensor networks
    • S. Jain, R. C. Shah, W. Brunette, G. Borriello, and S. Roy. Exploiting mobility for energy efficient data collection in wireless sensor networks. Mob. Netw. Appl., 11(3):327-339, 2006.
    • (2006) Mob. Netw. Appl , vol.11 , Issue.3 , pp. 327-339
    • Jain, S.1    Shah, R.C.2    Brunette, W.3    Borriello, G.4    Roy, S.5
  • 28
    • 3142776431 scopus 로고    scopus 로고
    • Online maintenance of very large random samples
    • C. Jermaine, A. Pol, and S. Arumugam. Online maintenance of very large random samples. In SIGMOD '04, pages 299-310.
    • SIGMOD '04 , pp. 299-310
    • Jermaine, C.1    Pol, A.2    Arumugam, S.3
  • 30
    • 0036949534 scopus 로고    scopus 로고
    • Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet
    • P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet. In ASPLOS-X '02, pages 96-107.
    • ASPLOS-X '02 , pp. 96-107
    • Juang, P.1    Oki, H.2    Wang, Y.3    Martonosi, M.4    Peh, L.S.5    Rubenstein, D.6
  • 33
    • 46649120279 scopus 로고    scopus 로고
    • Density biased reservoir sampling for clustering
    • K. Kerdprasop, N. Kerdprasop, and J. Sun. Density biased reservoir sampling for clustering. In AIA '05, pages 95-100.
    • AIA '05 , pp. 95-100
    • Kerdprasop, K.1    Kerdprasop, N.2    Sun, J.3
  • 34
    • 0027927896 scopus 로고    scopus 로고
    • The power of sampling in knowledge discovery
    • J. Kivinen and H. Mannila. The power of sampling in knowledge discovery. In PODS '94, pages 77-85.
    • PODS '94 , pp. 77-85
    • Kivinen, J.1    Mannila, H.2
  • 35
    • 22444451988 scopus 로고    scopus 로고
    • Is sampling useful in data mining? a case in the maintenance of discovered association rules
    • S. D. Lee, D. W. Cheung, and B. Kao. Is sampling useful in data mining? a case in the maintenance of discovered association rules. Data Min. Knowl. Discov., 2(3):233-262, 1998.
    • (1998) Data Min. Knowl. Discov , vol.2 , Issue.3 , pp. 233-262
    • Lee, S.D.1    Cheung, D.W.2    Kao, B.3
  • 36
    • 0029358409 scopus 로고    scopus 로고
    • Query size estimation by adaptive sampling
    • R. J. Lipton and J. F. Naughton. Query size estimation by adaptive sampling. In PODS'95, pages 18-25.
    • PODS'95 , pp. 18-25
    • Lipton, R.J.1    Naughton, J.F.2
  • 37
    • 0004202334 scopus 로고    scopus 로고
    • S. L. Lohr, editor, Duxbury Press, Pacific Grove
    • S. L. Lohr, editor. Sampling: Design and Analysis. Duxbury Press, Pacific Grove, 1999.
    • (1999) Sampling: Design and Analysis
  • 38
    • 0033717344 scopus 로고    scopus 로고
    • Analysis and application of adaptive sampling
    • J. F. Lynch. Analysis and application of adaptive sampling. In PODS '00, pages 260-267.
    • PODS '00 , pp. 260-267
    • Lynch, J.F.1
  • 39
  • 40
    • 2442443820 scopus 로고    scopus 로고
    • Approximate frequency counts over data streams
    • G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In VLDB '02, pages 346-357.
    • VLDB '02 , pp. 346-357
    • Manku, G.S.1    Motwani, R.2
  • 41
    • 46649100033 scopus 로고    scopus 로고
    • Adaptive sampling mechanisms in sensor networks
    • A. D. Marbini and L. E. Sacks. Adaptive sampling mechanisms in sensor networks. In LCS '03.
    • LCS '03
    • Marbini, A.D.1    Sacks, L.E.2
  • 42
    • 0020985860 scopus 로고
    • A convenient algorithm for drawing a simple random sample
    • A. McLeod and D. Bellhouse. A convenient algorithm for drawing a simple random sample. Applied Statistics, 32:182184, 1983.
    • (1983) Applied Statistics , vol.32 , pp. 182184
    • McLeod, A.1    Bellhouse, D.2
  • 44
    • 0008786083 scopus 로고    scopus 로고
    • Memory allocation strategies for complex decision support queries
    • B. Nag and D. J. DeWitt. Memory allocation strategies for complex decision support queries. In CIKM '98, pages 116-123.
    • CIKM '98 , pp. 116-123
    • Nag, B.1    DeWitt, D.J.2
  • 45
    • 0004140530 scopus 로고
    • PhD thesis, Mailstop, Cyclotron Road, Berkeley, California 94720, U.S.A
    • F. Olken. Random Sampling from Databases. PhD thesis, Mailstop 50B-3238, 1 Cyclotron Road, Berkeley, California 94720, U.S.A., 1993.
    • (1993) Random Sampling from Databases
    • Olken, F.1
  • 46
    • 0027311629 scopus 로고    scopus 로고
    • Sampling from spatial databases
    • F. Olken and D. Rotem. Sampling from spatial databases. In ICDE'03, pages 199-208.
    • ICDE'03 , pp. 199-208
    • Olken, F.1    Rotem, D.2
  • 47
    • 84942436269 scopus 로고    scopus 로고
    • DATA MULEs: Modeling a three-tier architecture for sparse sensor networks
    • R. Shah, S. Roy, S. Jain, and W. Brunette. DATA MULEs: Modeling a three-tier architecture for sparse sensor networks. In IEEE SNPA Workshop '03, 2003.
    • (2003) IEEE SNPA Workshop '03
    • Shah, R.1    Roy, S.2    Jain, S.3    Brunette, W.4
  • 48
    • 21644470242 scopus 로고    scopus 로고
    • Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines
    • A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava. Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines. In RTSS '04, pages 296-305.
    • RTSS '04 , pp. 296-305
    • Somasundara, A.A.1    Ramamoorthy, A.2    Srivastava, M.B.3
  • 49
    • 84919463137 scopus 로고    scopus 로고
    • Memory-limited execution of windowed stream joins
    • U. Srivastava and J. Widom. Memory-limited execution of windowed stream joins. In VLDB '04, pages 324-335.
    • VLDB '04 , pp. 324-335
    • Srivastava, U.1    Widom, J.2
  • 51
    • 84883764744 scopus 로고    scopus 로고
    • Efficient and adaptive processing of multiple continuous queries
    • Springer-Verlag
    • W. H. Tok and S. Bressan. Efficient and adaptive processing of multiple continuous queries. In EDBT '02, pages 215-232. Springer-Verlag.
    • EDBT '02 , pp. 215-232
    • Tok, W.H.1    Bressan, S.2
  • 52
    • 84899066301 scopus 로고    scopus 로고
    • Data collection, storage, and retrieval with an underwater sensor network
    • I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection, storage, and retrieval with an underwater sensor network. In SenSys '05, pages 154-165.
    • SenSys '05 , pp. 154-165
    • Vasilescu, I.1    Kotay, K.2    Rus, D.3    Dunbabin, M.4    Corke, P.5
  • 53
    • 0022026217 scopus 로고
    • Random sampling with a reservoir
    • J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37-57, 1985.
    • (1985) ACM Trans. Math. Softw , vol.11 , Issue.1 , pp. 37-57
    • Vitter, J.S.1
  • 54
    • 33947173714 scopus 로고    scopus 로고
    • Adaptive query optimization method for multiple continuous queries
    • Y. Watanabe and H. Kitagawa. Adaptive query optimization method for multiple continuous queries. In ICDEW '05, pages 1242-1245.
    • ICDEW '05 , pp. 1242-1245
    • Watanabe, Y.1    Kitagawa, H.2
  • 55
    • 33751054748 scopus 로고    scopus 로고
    • RTSTREAM: Real-time query processing for data streams
    • Y. Wei, S. H. Son, and J. A. Stankovic. RTSTREAM: Real-time query processing for data streams. In ISORC '06, pages 141-150.
    • ISORC '06 , pp. 141-150
    • Wei, Y.1    Son, S.H.2    Stankovic, J.A.3
  • 56
    • 3042778352 scopus 로고    scopus 로고
    • Backcasting: Adaptive sampling for sensor networks
    • R. Willett, A. Martin, and R. Nowak. Backcasting: adaptive sampling for sensor networks. In IPSN '04, pages 124-133.
    • IPSN '04 , pp. 124-133
    • Willett, R.1    Martin, A.2    Nowak, R.3
  • 57
    • 17444417505 scopus 로고    scopus 로고
    • Efficient collection of sensor data in remote fields using mobile collectors
    • Y. L. Y. Tirta, Z. Li and S. Bagchi. Efficient collection of sensor data in remote fields using mobile collectors. In ICCCN 2004.
    • ICCCN 2004
    • Tirta, Y.L.Y.1    Li, Z.2    Bagchi, S.3
  • 59
    • 0036203798 scopus 로고    scopus 로고
    • D. Yi-Leh Wu, Agrawal and A. El Abbadi. Query estimation by adaptive sampling. In ICDE '02, pages 639-648.
    • D. Yi-Leh Wu, Agrawal and A. El Abbadi. Query estimation by adaptive sampling. In ICDE '02, pages 639-648.
  • 60
    • 0039881713 scopus 로고
    • Buffer management based on return on consumption in a multi-query environment
    • P. S. Yu and D. W. Cornell. Buffer management based on return on consumption in a multi-query environment. The VLDB Journal, 2(1):1-38, 1993.
    • (1993) The VLDB Journal , vol.2 , Issue.1 , pp. 1-38
    • Yu, P.S.1    Cornell, D.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.