메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2186-2191

Learning optimal Bayesian networks using A*search

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; SEARCH ALGORITHMS; SHORTEST PATH FINDINGS; SOLUTION SPACE; SPACE EFFICIENCIES;

EID: 84881039523     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-364     Document Type: Conference Paper
Times cited : (121)

References (13)
  • 2
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • February
    • David Maxwell Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445-498, February 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 3
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 5
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The sparse candidate algorithm
    • N. Friedman, I. Nachman, and D. Peer. Learning Bayesian network structure from massive datasets: The sparse candidate algorithm. In Proceedings of UAI-13, pages 206-215, 1999.
    • (1999) Proceedings of UAI-13 , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Peer, D.3
  • 6
    • 51849110999 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • Dawn Holmes and Lakhmi Jain, editors, Innovations in Bayesian Networks, Springer Berlin / Heidelberg
    • David Heckerman. A tutorial on learning with Bayesian networks. In Dawn Holmes and Lakhmi Jain, editors, Innovations in Bayesian Networks, volume 156 of Studies in Computational Intelligence, pages 33-82. Springer Berlin / Heidelberg, 1998.
    • (1998) Studies in Computational Intelligence , vol.156 , pp. 33-82
    • Heckerman, D.1
  • 7
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res., 5:549-573, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 8
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • March
    • Andrew Moore and Mary Soon Lee. Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8:67-91, March 1998.
    • (1998) Journal of Artificial Intelligence Research , vol.8 , pp. 67-91
    • Moore, A.1    Lee, M.S.2
  • 9
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 10
    • 80053201441 scopus 로고    scopus 로고
    • A simple approach for finding the globally optimal Bayesian network structure
    • T. Silander and P. Myllymaki. A simple approach for finding the globally optimal Bayesian network structure. In Proceedings of UAI-06, 2006.
    • Proceedings of UAI-06, 2006
    • Silander, T.1    Myllymaki, P.2
  • 12
    • 0008564212 scopus 로고    scopus 로고
    • Learning bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique
    • Joe Suzuki. Learning bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique. In International Conference on Machine Learning, pages 462-470, 1996.
    • (1996) International Conference on Machine Learning , pp. 462-470
    • Suzuki, J.1
  • 13
    • 0013268908 scopus 로고    scopus 로고
    • A branch-and-bound algorithm for MDL learning Bayesian networks
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
    • Jin Tian. A branch-and-bound algorithm for MDL learning Bayesian networks. In UAI '00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 580-588, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.
    • (2000) UAI '00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence , pp. 580-588
    • Tian, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.