메뉴 건너뛰기




Volumn 46, Issue 12, 2013, Pages 3519-3532

Regularized vector field learning with sparse approximation for mismatch removal

Author keywords

Hilbert space; Mismatch removal; Outlier; Regularization; Reproducing kernel; Sparse approximation; Vector field learning

Indexed keywords

OUTLIER; REGULARIZATION; REPRODUCING KERNEL; SPARSE APPROXIMATIONS; VECTOR FIELDS;

EID: 84881032491     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2013.05.017     Document Type: Article
Times cited : (184)

References (57)
  • 3
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio Regularization theory and neural networks architectures Neural Computation 7 1995 219 269
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 10
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • C.A. Micchelli, and M. Pontil On learning vector-valued functions Neural Computation 17 2005 177 204
    • (2005) Neural Computation , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 11
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections universal encoding strategies
    • E. Candes, and T. Tao Near-optimal signal recovery from random projections universal encoding strategies IEEE Transactions on Information Theory 52 2005 5406 5425
    • (2005) IEEE Transactions on Information Theory , vol.52 , pp. 5406-5425
    • Candes, E.1    Tao, T.2
  • 14
    • 77953123124 scopus 로고    scopus 로고
    • Sparse approximation through boosting for learning large scale kernel machines
    • P. Sun, and X. Yao Sparse approximation through boosting for learning large scale kernel machines IEEE Transactions on Neural Networks 21 2010 883 894
    • (2010) IEEE Transactions on Neural Networks , vol.21 , pp. 883-894
    • Sun, P.1    Yao, X.2
  • 19
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine, and K. Scheinberg Efficient SVM training using low-rank kernel representations Journal of Machine Learning Research 2 2001 243 264
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 20
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • F. Girosi An equivalence between sparse approximation and support vector machines Neural Computation 10 1998 1455 1480
    • (1998) Neural Computation , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 23
    • 0037567878 scopus 로고    scopus 로고
    • Efficient Implementation of Gaussian Processes
    • Cavendish Laboratory, Cambridge University, Cambridge
    • M.N. Gibbs, D.J.C. MacKay, Efficient Implementation of Gaussian Processes, Technical Report, Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, 1997.
    • (1997) Technical Report, Department of Physics
    • Gibbs, M.N.1    Mackay, D.J.C.2
  • 24
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods: Support Vector Learning, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 25
    • 30044437592 scopus 로고    scopus 로고
    • A fast dual algorithm for kernel logistic regression
    • S.S. Keerthi, K. Duan, S. Shevade, and A. Poo A fast dual algorithm for kernel logistic regression Machine Learning 61 2005 151 165
    • (2005) Machine Learning , vol.61 , pp. 151-165
    • Keerthi, S.S.1    Duan, K.2    Shevade, S.3    Poo, A.4
  • 29
    • 48849086653 scopus 로고    scopus 로고
    • Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem
    • C. Carmeli, E. De Vito, and A. Toigo Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem Analysis and Applications 4 2006 377 408
    • (2006) Analysis and Applications , vol.4 , pp. 377-408
    • Carmeli, C.1    De Vito, E.2    Toigo, A.3
  • 30
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, and F. Girosi Networks for approximation and learning Proceedings of the IEEE 78 1990 1481 1497
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 31
    • 56749100556 scopus 로고    scopus 로고
    • Approximation methods for gaussian process regression
    • J. Quiñonero-Candela, C.E. Ramussen, C.K.I. Williams, Approximation methods for gaussian process regression, in: Large-Scale Kernel Machines, 2007, pp. 203-223.
    • (2007) Large-Scale Kernel Machines , pp. 203-223
    • Quiñonero-Candela, J.1
  • 32
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron Universal approximation bounds for superpositions of a sigmoidal function IEEE Transactions on Information Theory 39 1993 930 945
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 33
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training
    • L.K. Jones A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training Annals of Statistics 20 1992 608 613
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 35
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • V. Kůrková, and M. Sanguineti Comparison of worst case errors in linear and neural network approximation IEEE Transactions on Information Theory 48 2002 264 275
    • (2002) IEEE Transactions on Information Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 36
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • V. Kůrková, and M. Sanguineti Learning with generalization capability by kernel methods of bounded complexity Journal of Complexity 21 2005 350 367
    • (2005) Journal of Complexity , vol.21 , pp. 350-367
    • Kůrková, V.1    Sanguineti, M.2
  • 43
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 2004 91 110
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.1
  • 44
    • 0033894631 scopus 로고    scopus 로고
    • MLESAC a new robust estimator with application to estimating image geometry
    • P.H.S. Torr, and A. Zisserman MLESAC a new robust estimator with application to estimating image geometry Computer Vision and Image Understanding 78 2000 138 156
    • (2000) Computer Vision and Image Understanding , vol.78 , pp. 138-156
    • Torr, P.H.S.1    Zisserman, A.2
  • 45
    • 29144460052 scopus 로고    scopus 로고
    • Outlier correction from uncalibrated image sequence using the triangulation method
    • J.H. Kim, and J.H. Han Outlier correction from uncalibrated image sequence using the triangulation method Pattern Recognition 39 2006 394 404
    • (2006) Pattern Recognition , vol.39 , pp. 394-404
    • Kim, J.H.1    Han, J.H.2
  • 46
    • 51849101279 scopus 로고    scopus 로고
    • Guided sampling via weak motion models and outlier sample generation for epipolar geometry estimation
    • L. Goshen, and I. Shimshoni Guided sampling via weak motion models and outlier sample generation for epipolar geometry estimation International Journal of Computer Vision 80 2008 275 288
    • (2008) International Journal of Computer Vision , vol.80 , pp. 275-288
    • Goshen, L.1    Shimshoni, I.2
  • 57
    • 0019574599 scopus 로고
    • Random sample consensus a paradigm for model fitting with application to image analysis and automated cartography
    • M.A. Fischler, and R.C. Bolles Random sample consensus a paradigm for model fitting with application to image analysis and automated cartography Communications of the ACM 24 1981 381 395
    • (1981) Communications of the ACM , vol.24 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.