-
3
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio Regularization theory and neural networks architectures Neural Computation 7 1995 219 269
-
(1995)
Neural Computation
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
5
-
-
9444250658
-
Regularized least-squares classification
-
R. Rifkin, G. Yeo, T. Poggio, Regularized least-squares classification, in: Advances in Learning Theory: Methods, Model and Applications, 2003.
-
(2003)
Advances in Learning Theory: Methods, Model and Applications
-
-
Rifkin, R.1
Yeo, G.2
Poggio, T.3
-
6
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
C. Saunders, A. Gammermann, V. Vovk, Ridge regression learning algorithm in dual variables, in: Proceedings of International Conference on Machine Learning, 1998, pp. 515-521.
-
(1998)
Proceedings of International Conference on Machine Learning
, pp. 515-521
-
-
Saunders, C.1
Gammermann, A.2
Vovk, V.3
-
8
-
-
84863525439
-
Multi-Output Learning via Spectral Filtering
-
Cambridge
-
L. Baldassarre, L. Rosasco, A. Barla, A. Verri, Multi-Output Learning via Spectral Filtering, Technical Report, MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, 2011.
-
(2011)
Technical Report, MIT Computer Science and Artificial Intelligence Laboratory
-
-
Baldassarre, L.1
Rosasco, L.2
Barla, A.3
Verri, A.4
-
9
-
-
80052872035
-
A robust method for vector field learning with application to mismatch removing
-
J. Zhao, J. Ma, J. Tian, J. Ma, D. Zhang, A robust method for vector field learning with application to mismatch removing, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 2977-2984.
-
(2011)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2977-2984
-
-
Zhao, J.1
Ma, J.2
Tian, J.3
Ma, J.4
Zhang, D.5
-
10
-
-
14544299611
-
On learning vector-valued functions
-
C.A. Micchelli, and M. Pontil On learning vector-valued functions Neural Computation 17 2005 177 204
-
(2005)
Neural Computation
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
11
-
-
33947416035
-
Near-optimal signal recovery from random projections universal encoding strategies
-
E. Candes, and T. Tao Near-optimal signal recovery from random projections universal encoding strategies IEEE Transactions on Information Theory 52 2005 5406 5425
-
(2005)
IEEE Transactions on Information Theory
, vol.52
, pp. 5406-5425
-
-
Candes, E.1
Tao, T.2
-
14
-
-
77953123124
-
Sparse approximation through boosting for learning large scale kernel machines
-
P. Sun, and X. Yao Sparse approximation through boosting for learning large scale kernel machines IEEE Transactions on Neural Networks 21 2010 883 894
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, pp. 883-894
-
-
Sun, P.1
Yao, X.2
-
15
-
-
60949102658
-
A sparse regularized least-squares preference learning algorithm
-
E. Tsivtsivadze, T. Pahikkala, A. Airola, J. Boberg, T. Salakoski, A sparse regularized least-squares preference learning algorithm, in: Proceedings of the Conference on Tenth Scandinavian Conference on Artificial Intelligence, 2008, pp. 76-83.
-
(2008)
Proceedings of the Conference on Tenth Scandinavian Conference on Artificial Intelligence
, pp. 76-83
-
-
Tsivtsivadze, E.1
Pahikkala, T.2
Airola, A.3
Boberg, J.4
Salakoski, T.5
-
19
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine, and K. Scheinberg Efficient SVM training using low-rank kernel representations Journal of Machine Learning Research 2 2001 243 264
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
20
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
F. Girosi An equivalence between sparse approximation and support vector machines Neural Computation 10 1998 1455 1480
-
(1998)
Neural Computation
, vol.10
, pp. 1455-1480
-
-
Girosi, F.1
-
23
-
-
0037567878
-
Efficient Implementation of Gaussian Processes
-
Cavendish Laboratory, Cambridge University, Cambridge
-
M.N. Gibbs, D.J.C. MacKay, Efficient Implementation of Gaussian Processes, Technical Report, Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, 1997.
-
(1997)
Technical Report, Department of Physics
-
-
Gibbs, M.N.1
Mackay, D.J.C.2
-
24
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods: Support Vector Learning, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
27
-
-
85161967549
-
Parallelized stochastic gradient descent
-
M. Zinkevich, M. Weimer, A. Smola, L. Li, Parallelized stochastic gradient descent, in: Advances in Neural Information Processing Systems, 2010, pp. 2595-2603.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Smola, A.3
Li, L.4
-
28
-
-
80052416457
-
Stochastic gradient descent training for L1-regularized log-linear models with cumulative penalty
-
Y. Tsuruoka, J. Tsujii, S. Ananiadou, Stochastic gradient descent training for L1-regularized log-linear models with cumulative penalty, in: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, 2009, pp. 477-485.
-
(2009)
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP
, pp. 477-485
-
-
Tsuruoka, Y.1
Tsujii, J.2
Ananiadou, S.3
-
29
-
-
48849086653
-
Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem
-
C. Carmeli, E. De Vito, and A. Toigo Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem Analysis and Applications 4 2006 377 408
-
(2006)
Analysis and Applications
, vol.4
, pp. 377-408
-
-
Carmeli, C.1
De Vito, E.2
Toigo, A.3
-
30
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio, and F. Girosi Networks for approximation and learning Proceedings of the IEEE 78 1990 1481 1497
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
31
-
-
56749100556
-
Approximation methods for gaussian process regression
-
J. Quiñonero-Candela, C.E. Ramussen, C.K.I. Williams, Approximation methods for gaussian process regression, in: Large-Scale Kernel Machines, 2007, pp. 203-223.
-
(2007)
Large-Scale Kernel Machines
, pp. 203-223
-
-
Quiñonero-Candela, J.1
-
32
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
A.R. Barron Universal approximation bounds for superpositions of a sigmoidal function IEEE Transactions on Information Theory 39 1993 930 945
-
(1993)
IEEE Transactions on Information Theory
, vol.39
, pp. 930-945
-
-
Barron, A.R.1
-
33
-
-
0000796112
-
A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training
-
L.K. Jones A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training Annals of Statistics 20 1992 608 613
-
(1992)
Annals of Statistics
, vol.20
, pp. 608-613
-
-
Jones, L.K.1
-
35
-
-
0036165028
-
Comparison of worst case errors in linear and neural network approximation
-
V. Kůrková, and M. Sanguineti Comparison of worst case errors in linear and neural network approximation IEEE Transactions on Information Theory 48 2002 264 275
-
(2002)
IEEE Transactions on Information Theory
, vol.48
, pp. 264-275
-
-
Kůrková, V.1
Sanguineti, M.2
-
36
-
-
18144390163
-
Learning with generalization capability by kernel methods of bounded complexity
-
V. Kůrková, and M. Sanguineti Learning with generalization capability by kernel methods of bounded complexity Journal of Complexity 21 2005 350 367
-
(2005)
Journal of Complexity
, vol.21
, pp. 350-367
-
-
Kůrková, V.1
Sanguineti, M.2
-
37
-
-
34547975729
-
Robust multi-task learning with t-processes
-
S. Yu, V. Tresp, K. Yu, Robust multi-task learning with t-processes, in: Proceedings of International Conference on Machine Learning, 2007, pp. 1103-1110.
-
(2007)
Proceedings of International Conference on Machine Learning
, pp. 1103-1110
-
-
Yu, S.1
Tresp, V.2
Yu, K.3
-
38
-
-
85162059520
-
Predictive matrix-variate t models
-
S. Zhu, K. Yu, Y. Gong, Predictive matrix-variate t models, in: Advances in Neural Information Processing Systems, 2008, pp. 1721-1728.
-
(2008)
Advances in Neural Information Processing Systems
, pp. 1721-1728
-
-
Zhu, S.1
Yu, K.2
Gong, Y.3
-
43
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. Lowe Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 2004 91 110
-
(2004)
International Journal of Computer Vision
, vol.60
, pp. 91-110
-
-
Lowe, D.1
-
44
-
-
0033894631
-
MLESAC a new robust estimator with application to estimating image geometry
-
P.H.S. Torr, and A. Zisserman MLESAC a new robust estimator with application to estimating image geometry Computer Vision and Image Understanding 78 2000 138 156
-
(2000)
Computer Vision and Image Understanding
, vol.78
, pp. 138-156
-
-
Torr, P.H.S.1
Zisserman, A.2
-
45
-
-
29144460052
-
Outlier correction from uncalibrated image sequence using the triangulation method
-
J.H. Kim, and J.H. Han Outlier correction from uncalibrated image sequence using the triangulation method Pattern Recognition 39 2006 394 404
-
(2006)
Pattern Recognition
, vol.39
, pp. 394-404
-
-
Kim, J.H.1
Han, J.H.2
-
46
-
-
51849101279
-
Guided sampling via weak motion models and outlier sample generation for epipolar geometry estimation
-
L. Goshen, and I. Shimshoni Guided sampling via weak motion models and outlier sample generation for epipolar geometry estimation International Journal of Computer Vision 80 2008 275 288
-
(2008)
International Journal of Computer Vision
, vol.80
, pp. 275-288
-
-
Goshen, L.1
Shimshoni, I.2
-
48
-
-
84875849793
-
Mismatch removal via coherent spatial mapping
-
J. Ma, J. Zhao, Y. Zhou, J. Tian, Mismatch removal via coherent spatial mapping, in: Proceedings of IEEE International Conference on Image Processing, 2012, pp. 1-4.
-
(2012)
Proceedings of IEEE International Conference on Image Processing
, pp. 1-4
-
-
Ma, J.1
Zhao, J.2
Zhou, Y.3
Tian, J.4
-
49
-
-
84887399049
-
Robust estimation of nonrigid transformation for point set registration
-
J. Ma, J. Zhao, J. Tian, Z. Tu, A. Yuille, Robust estimation of nonrigid transformation for point set registration, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013.
-
(2013)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
-
-
Ma, J.1
Zhao, J.2
Tian, J.3
Tu, Z.4
Yuille, A.5
-
51
-
-
33244468369
-
A comparison of affine region detectors
-
K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. van Gool A comparison of affine region detectors International Journal of Computer Vision 65 2005 43 72
-
(2005)
International Journal of Computer Vision
, vol.65
, pp. 43-72
-
-
Mikolajczyk, K.1
Tuytelaars, T.2
Schmid, C.3
Zisserman, A.4
Matas, J.5
Schaffalitzky, F.6
Kadir, T.7
Van Gool, L.8
-
54
-
-
70450203735
-
Surface feature detection and description with applications to mesh matching
-
A. Zaharescu, E. Boyer, K. Varanasi, R. Horaud, Surface feature detection and description with applications to mesh matching, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 373-380.
-
(2009)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
, pp. 373-380
-
-
Zaharescu, A.1
Boyer, E.2
Varanasi, K.3
Horaud, R.4
-
57
-
-
0019574599
-
Random sample consensus a paradigm for model fitting with application to image analysis and automated cartography
-
M.A. Fischler, and R.C. Bolles Random sample consensus a paradigm for model fitting with application to image analysis and automated cartography Communications of the ACM 24 1981 381 395
-
(1981)
Communications of the ACM
, vol.24
, pp. 381-395
-
-
Fischler, M.A.1
Bolles, R.C.2
|