메뉴 건너뛰기




Volumn 20, Issue 3, 2013, Pages 518-540

Reporting Monte Carlo Studies in Structural Equation Modeling

Author keywords

guidelines; Monte Carlo studies; reporting; structural equation modeling

Indexed keywords

GUIDELINES; REPORTING; STRUCTURAL EQUATION MODELING;

EID: 84880945552     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2013.797839     Document Type: Article
Times cited : (41)

References (87)
  • 1
  • 2
    • 34147096911 scopus 로고
    • The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis
    • Anderson, J. C. and Gerbing, D. W. 1984. The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49: 155 - 173.
    • (1984) Psychometrika , vol.49 , pp. 155-173
    • Anderson, J.C.1    Gerbing, D.W.2
  • 3
    • 0001699655 scopus 로고    scopus 로고
    • An evaluation of the Satorra-Bentler distributional misspecification correction applied to the McDonald fit index
    • Anderson, R. D. 1996. An evaluation of the Satorra-Bentler distributional misspecification correction applied to the McDonald fit index. Structural Equation Modeling, 3: 203 - 227.
    • (1996) Structural Equation Modeling , vol.3 , pp. 203-227
    • Anderson, R.D.1
  • 4
    • 58849141749 scopus 로고    scopus 로고
    • Reporting standards for research in psychology: Why do we need them? What might they be?
    • APA Publications and Communications Board Working Group on Journal Article Reporting Standards
    • APA Publications and Communications Board Working Group on Journal Article Reporting Standards. 2008. Reporting standards for research in psychology: Why do we need them? What might they be?. American Psychologist, 63: 839 - 851.
    • (2008) American Psychologist , vol.63 , pp. 839-851
  • 5
    • 33845677031 scopus 로고    scopus 로고
    • Spring House, PA, Spring House, PA,: Amos Development Corporation
    • Arbuckle, J. 1995-2006. Amos 7.0: User's guide Spring House, PA: Amos Development Corporation.
    • Amos 7.0: User's guide
    • Arbuckle, J.1
  • 6
    • 0344407702 scopus 로고    scopus 로고
    • Tilburg, Tilburg,: Dutch University Press., [Doctoral dissertation, Catholic University Brabant]
    • Aris, E. M. D. 2001. Statistical causal models for categorical data Tilburg: Dutch University Press. [Doctoral dissertation, Catholic University Brabant]
    • (2001) Statistical causal models for categorical data
    • Aris, E.M.D.1
  • 8
    • 61449217066 scopus 로고    scopus 로고
    • Using Mx to analyze cross-level effects in two-level structural equation models
    • Bai, Y. and Poon, W.-Y. 2009. Using Mx to analyze cross-level effects in two-level structural equation models. Structural Equation Modeling, 16: 163 - 178.
    • (2009) Structural Equation Modeling , vol.16 , pp. 163-178
    • Bai, Y.1    Poon, W.-Y.2
  • 9
    • 0012375194 scopus 로고    scopus 로고
    • The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling
    • Bandalos, D. L. 2002. The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9: 78 - 102.
    • (2002) Structural Equation Modeling , vol.9 , pp. 78-102
    • Bandalos, D.L.1
  • 10
    • 0032388357 scopus 로고    scopus 로고
    • Random-number generator validity in simulation studies: An investigation of normality
    • Bang, J. W., Schumacker, R. E. and Schlieve, P. L. 1998. Random-number generator validity in simulation studies: An investigation of normality. Educational and Psychological Measurement, 58: 430 - 450.
    • (1998) Educational and Psychological Measurement , vol.58 , pp. 430-450
    • Bang, J.W.1    Schumacker, R.E.2    Schlieve, P.L.3
  • 11
    • 0003010184 scopus 로고
    • The robustness of LISREL against small sample sizes in factor analysis models
    • In: Jöreskog K. G., Wold H., editors Amsterdam, Netherlands, Amsterdam,: North-Holland., Part I
    • Boomsma, A. 1982. " The robustness of LISREL against small sample sizes in factor analysis models. ". In Systems under indirect observation: Causality, structure, prediction Edited by: Jöreskog, K. G. and Wold, H. 149 - 173. Amsterdam, Netherlands: North-Holland. Part I
    • (1982) Systems under indirect observation: Causality, structure, prediction , pp. 149-173
    • Boomsma, A.1
  • 13
    • 0001342316 scopus 로고
    • Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation
    • Boomsma, A. 1985. Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation. Psychometrika, 50: 229 - 242.
    • (1985) Psychometrika , vol.50 , pp. 229-242
    • Boomsma, A.1
  • 14
    • 33846805404 scopus 로고    scopus 로고
    • Reporting analyses of covariance structures
    • Boomsma, A. 2000. Reporting analyses of covariance structures. Structural Equation Modeling, 7: 461 - 483.
    • (2000) Structural Equation Modeling , vol.7 , pp. 461-483
    • Boomsma, A.1
  • 16
    • 77955157376 scopus 로고    scopus 로고
    • glmuti: An R package for easy automated model selection with (generalized) linear models
    • Calcagno, V. and De Mezancourt, C. 2010. glmuti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34: 1 - 29.
    • (2010) Journal of Statistical Software , vol.34 , pp. 1-29
    • Calcagno, V.1    De Mezancourt, C.2
  • 17
    • 0035532741 scopus 로고    scopus 로고
    • Improper solutions in structural equation modeling: Causes, consequences, and strategies
    • Chen, F., Bollen, K. A., Paxton, P., Curran, P. J. and Kirby, J. 2001. Improper solutions in structural equation modeling: Causes, consequences, and strategies. Sociological Methods & Research, 29: 468 - 508.
    • (2001) Sociological Methods & Research , vol.29 , pp. 468-508
    • Chen, F.1    Bollen, K.A.2    Paxton, P.3    Curran, P.J.4    Kirby, J.5
  • 18
    • 77958091565 scopus 로고    scopus 로고
    • The impact of ignoring a level of nesting structure in multilevel growth mixture models: A Monte Carlo study
    • Chen, Q., Kwok, O.-M., Luo, W. and Wilson, V. L. 2010. The impact of ignoring a level of nesting structure in multilevel growth mixture models: A Monte Carlo study. Structural Equation Modeling, 17: 570 - 589.
    • (2010) Structural Equation Modeling , vol.17 , pp. 570-589
    • Chen, Q.1    Kwok, O.-M.2    Luo, W.3    Wilson, V.L.4
  • 19
    • 79851496916 scopus 로고    scopus 로고
    • Evaluating goodness-of-fit indexes for testing measurement invariance
    • Cheung, G. W. and Rensvold, R. B. 2002. Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9: 233 - 255.
    • (2002) Structural Equation Modeling , vol.9 , pp. 233-255
    • Cheung, G.W.1    Rensvold, R.B.2
  • 20
    • 67650852039 scopus 로고    scopus 로고
    • Constructing approximate confidence intervals for parameters with structural equation models
    • Cheung, M. W.-L. 2009. Constructing approximate confidence intervals for parameters with structural equation models. Structural Equation Modeling, 16: 267 - 294.
    • (2009) Structural Equation Modeling , vol.16 , pp. 267-294
    • Cheung, M.W.-L.1
  • 21
    • 77954433886 scopus 로고    scopus 로고
    • Fixed-effects meta-analyses as multiple-group structural equation models
    • Cheung, M. W.-L. 2010. Fixed-effects meta-analyses as multiple-group structural equation models. Structural Equation Modeling, 17: 481 - 509.
    • (2010) Structural Equation Modeling , vol.17 , pp. 481-509
    • Cheung, M.W.-L.1
  • 22
    • 61449116912 scopus 로고    scopus 로고
    • Meta-analytic structural equation modeling: A two-stage approach
    • Cheung, M. W.-L. and Chan, W. 2005. Meta-analytic structural equation modeling: A two-stage approach. Structural Equation Modeling, 16: 28 - 53.
    • (2005) Structural Equation Modeling , vol.16 , pp. 28-53
    • Cheung, M.W.-L.1    Chan, W.2
  • 23
    • 17444424576 scopus 로고    scopus 로고
    • A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling
    • Cheung, M. W.-L. and Chan, W. 2009. A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Psychological Methods, 10: 40 - 64.
    • (2009) Psychological Methods , vol.10 , pp. 40-64
    • Cheung, M.W.-L.1    Chan, W.2
  • 28
    • 34147166571 scopus 로고
    • Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices
    • Ding, L., Velicer, W. F. and Harlow, L. L. 1995. Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices. Structural Equation Modeling, 2: 119 - 144.
    • (1995) Structural Equation Modeling , vol.2 , pp. 119-144
    • Ding, L.1    Velicer, W.F.2    Harlow, L.L.3
  • 29
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders, C. K. and Bandalos, D. L. 2001. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8: 430 - 457.
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 30
    • 18444408338 scopus 로고    scopus 로고
    • Power of latent growth modeling for detecting group differences in latent growth trajectory parameters
    • Fan, X. 2003. Power of latent growth modeling for detecting group differences in latent growth trajectory parameters. Structural Equation Modeling, 10: 380 - 400.
    • (2003) Structural Equation Modeling , vol.10 , pp. 380-400
    • Fan, X.1
  • 31
    • 22144444619 scopus 로고    scopus 로고
    • Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes
    • Fan, X., Thompson, B. and Wang, L. 1999. Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6: 56 - 83.
    • (1999) Structural Equation Modeling , vol.6 , pp. 56-83
    • Fan, X.1    Thompson, B.2    Wang, L.3
  • 32
    • 0010033533 scopus 로고    scopus 로고
    • Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality
    • Fouladi, R. T. 2000. Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling, 7: 356 - 410.
    • (2000) Structural Equation Modeling , vol.7 , pp. 356-410
    • Fouladi, R.T.1
  • 33
    • 61449110116 scopus 로고    scopus 로고
    • Automating multiple software packages in simulation research for structural equation modeling and hierarchical linear modeling
    • Gagné, P. and Furlow, C. F. 2009. Automating multiple software packages in simulation research for structural equation modeling and hierarchical linear modeling. Structural Equation Modeling, 16: 179 - 185.
    • (2009) Structural Equation Modeling , vol.16 , pp. 179-185
    • Gagné, P.1    Furlow, C.F.2
  • 35
    • 0000497010 scopus 로고    scopus 로고
    • Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization
    • Gold, M. S. and Bentler, P. M. 2000. Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization. Structural Equation Modeling, 7: 319 - 355.
    • (2000) Structural Equation Modeling , vol.7 , pp. 319-355
    • Gold, M.S.1    Bentler, P.M.2
  • 36
    • 33846833527 scopus 로고    scopus 로고
    • An adjusted Bonferroni method for elimination of parameters in specification addition searches
    • Green, S., Thompson, M. S. and Poirer, J. 2001. An adjusted Bonferroni method for elimination of parameters in specification addition searches. Structural Equation Modeling, 8: 18 - 39.
    • (2001) Structural Equation Modeling , vol.8 , pp. 18-39
    • Green, S.1    Thompson, M.S.2    Poirer, J.3
  • 37
    • 0041497541 scopus 로고    scopus 로고
    • Type I error and power of latent mean methods and MANOVA in factorially invariant and noninvariant latent variable systems
    • Hancock, G. R., Lawrence, F. R. and Nevitt, J. 2000. Type I error and power of latent mean methods and MANOVA in factorially invariant and noninvariant latent variable systems. Structural Equation Modeling, 7: 534 - 556.
    • (2000) Structural Equation Modeling , vol.7 , pp. 534-556
    • Hancock, G.R.1    Lawrence, F.R.2    Nevitt, J.3
  • 39
    • 54049096394 scopus 로고    scopus 로고
    • Evaluating the power of latent growth curve models to detect individual differences in change
    • Hertzog, C., Van Oertzen, T., Ghisletta, P. and Lindenberger, U. 2008. Evaluating the power of latent growth curve models to detect individual differences in change. Structural Equation Modeling, 15: 541 - 563.
    • (2008) Structural Equation Modeling , vol.15 , pp. 541-563
    • Hertzog, C.1    Van Oertzen, T.2    Ghisletta, P.3    Lindenberger, U.4
  • 40
    • 34548066774 scopus 로고    scopus 로고
    • The model-size effect on traditional and modified tests of covariance structures
    • Herzog, W., Boomsma, A. and Reinecke, S. 2007. The model-size effect on traditional and modified tests of covariance structures. Structural Equation Modeling, 14: 361 - 390.
    • (2007) Structural Equation Modeling , vol.14 , pp. 361-390
    • Herzog, W.1    Boomsma, A.2    Reinecke, S.3
  • 42
    • 0003047071 scopus 로고
    • Amos, EQS, and LISREL for Windows: A comparative review
    • Hox, J. J. 1995. Amos, EQS, and LISREL for Windows: A comparative review. Structural Equation Modeling, 2: 79 - 91.
    • (1995) Structural Equation Modeling , vol.2 , pp. 79-91
    • Hox, J.J.1
  • 43
    • 11944261983 scopus 로고
    • Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches
    • Jaccard, J. and Wan, C. K. 1995. Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117: 348 - 357.
    • (1995) Psychological Bulletin , vol.117 , pp. 348-357
    • Jaccard, J.1    Wan, C.K.2
  • 45
    • 0040089710 scopus 로고
    • A study of power associated with testing factor mean differences under violations of factorial invariance
    • Kaplan, D. and George, R. 1995. A study of power associated with testing factor mean differences under violations of factorial invariance. Structural Equation Modeling, 2: 101 - 118.
    • (1995) Structural Equation Modeling , vol.2 , pp. 101-118
    • Kaplan, D.1    George, R.2
  • 48
    • 84863626440 scopus 로고    scopus 로고
    • Testing negative error variances: Is a Heywood case a symptom of misspecification?
    • The original version-with unruined highlighting-is online available at
    • Kolenikov, S. and Bollen, K. A. 2012. Testing negative error variances: Is a Heywood case a symptom of misspecification?. Sociological Methods & Research, 41: 124 - 167. http://web.missouri.edu/~kolenikovs/papers/heywood-12.pdf[The original version-with unruined highlighting-is online available at
    • (2012) Sociological Methods & Research , vol.41 , pp. 124-167
    • Kolenikov, S.1    Bollen, K.A.2
  • 49
    • 0347741975 scopus 로고    scopus 로고
    • 4th ed., Boston, MA, Boston, MA,: Addison-Wesley
    • Kopka, H. and Daly, P. W. 2004. Guide to LaTeX, 4th ed. Boston, MA: Addison-Wesley.
    • (2004) Guide to LaTeX
    • Kopka, H.1    Daly, P.W.2
  • 50
    • 42949102115 scopus 로고    scopus 로고
    • An expansion of the trait-state-occasion model: Accounting for shared method variance
    • LaGrange, B. and Cole, D. A. 2008. An expansion of the trait-state-occasion model: Accounting for shared method variance. Structural Equation Modeling, 15: 241 - 271.
    • (2008) Structural Equation Modeling , vol.15 , pp. 241-271
    • LaGrange, B.1    Cole, D.A.2
  • 51
    • 38049161661 scopus 로고    scopus 로고
    • A comparison of latent growth models for constructs measured by multiple items
    • Leite, W. L. 2007. A comparison of latent growth models for constructs measured by multiple items. Structural Equation Modeling, 14: 581 - 610.
    • (2007) Structural Equation Modeling , vol.14 , pp. 581-610
    • Leite, W.L.1
  • 52
    • 34548071321 scopus 로고    scopus 로고
    • Estimating nonlinear structural equation models: EMM and the Kenny-Judd model
    • Lyhagen, J. 2007. Estimating nonlinear structural equation models: EMM and the Kenny-Judd model. Structural Equation Modeling, 14: 391 - 403.
    • (2007) Structural Equation Modeling , vol.14 , pp. 391-403
    • Lyhagen, J.1
  • 54
    • 77949340433 scopus 로고    scopus 로고
    • EQS goes R: Simulations for SEM using the package REQS
    • Mai, P., Wu, E. and Bentler, P. M. 2010. EQS goes R: Simulations for SEM using the package REQS. Structural Equation Modeling, 17: 333 - 349.
    • (2010) Structural Equation Modeling , vol.17 , pp. 333-349
    • Mai, P.1    Wu, E.2    Bentler, P.M.3
  • 56
    • 0037514670 scopus 로고    scopus 로고
    • Comparison of methods for estimating and testing latent variable interactions
    • Moulder, B. C. and Algina, J. 2002. Comparison of methods for estimating and testing latent variable interactions. Structural Equation Modeling, 9: 1 - 19.
    • (2002) Structural Equation Modeling , vol.9 , pp. 1-19
    • Moulder, B.C.1    Algina, J.2
  • 57
    • 36749063069 scopus 로고    scopus 로고
    • Boca Raton, FL, Boca Raton, FL,: Chapman & Hall/CRC
    • Murrell, P. 2005. R graphics Boca Raton, FL: Chapman & Hall/CRC.
    • (2005) R graphics
    • Murrell, P.1
  • 59
    • 0003753978 scopus 로고    scopus 로고
    • 6th ed., Los Angeles, CA, Los Angeles, CA,: Muthén & Muthén
    • Muthén, L. K. and Muthén, B. O. 1998-2010. Mplus user's guide, 6th ed. Los Angeles, CA: Muthén & Muthén.
    • Mplus user's guide
    • Muthén, L.K.1    Muthén, B.O.2
  • 60
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • Nylund, K. L., Asparouhov, T. and Muthén, B. O. 2007. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14: 535 - 569.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 61
    • 0001488412 scopus 로고    scopus 로고
    • The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality
    • Olsson, U. H., Foss, T., Troye, S. V. and Howell, R. D. 2000. The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling, 7: 557 - 595.
    • (2000) Structural Equation Modeling , vol.7 , pp. 557-595
    • Olsson, U.H.1    Foss, T.2    Troye, S.V.3    Howell, R.D.4
  • 64
    • 0039996817 scopus 로고
    • Publication policy regarding Monte Carlo studies, Referring: Publication policy (1979)
    • Publication policy regarding Monte Carlo studies. 1979. Psychometrika, 44: 133 - 134. Referring: Publication policy (1979)
    • (1979) Psychometrika , vol.44 , pp. 133-134
  • 65
    • 79951780811 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria, Vienna,: R Foundation for Statistical Computing., ISBN 3-900051-07-0
    • R Development Core Team. 1999-2010. R: A language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0
    • R: A language and environment for statistical computing
  • 66
    • 12844256092 scopus 로고    scopus 로고
    • On the large-sample bias, variance, and mean squared error of the conventional noncentrality parameter estimator of covariance structure models
    • Raykov, T. 2000. On the large-sample bias, variance, and mean squared error of the conventional noncentrality parameter estimator of covariance structure models. Structural Equation Modeling, 7: 431 - 441.
    • (2000) Structural Equation Modeling , vol.7 , pp. 431-441
    • Raykov, T.1
  • 70
    • 0028439930 scopus 로고
    • Science and ethics in conducting, analyzing, and reporting psychological research
    • Rosenthal, R. 1994. Science and ethics in conducting, analyzing, and reporting psychological research. Psychological Science, 3: 127 - 134.
    • (1994) Psychological Science , vol.3 , pp. 127-134
    • Rosenthal, R.1
  • 71
    • 77956831890 scopus 로고    scopus 로고
    • Level-specific evaluation of model fit in multilevel structural equation modeling
    • Ryu, E. and West, S. G. 2009. Level-specific evaluation of model fit in multilevel structural equation modeling. Structural Equation Modeling, 16: 583 - 601.
    • (2009) Structural Equation Modeling , vol.16 , pp. 583-601
    • Ryu, E.1    West, S.G.2
  • 72
  • 73
    • 0034200625 scopus 로고    scopus 로고
    • Testing for robustness in Monte Carlo studies
    • Serlin, R. C. 2000. Testing for robustness in Monte Carlo studies. Psychological Methods, 5: 230 - 240.
    • (2000) Psychological Methods , vol.5 , pp. 230-240
    • Serlin, R.C.1
  • 75
    • 35649013305 scopus 로고    scopus 로고
    • Least absolute deviation estimation in structural equation modeling
    • Siemsen, E. and Bollen, K. A. 2007. Least absolute deviation estimation in structural equation modeling. Sociological Methods & Research, 36: 227 - 265.
    • (2007) Sociological Methods & Research , vol.36 , pp. 227-265
    • Siemsen, E.1    Bollen, K.A.2
  • 76
    • 0038811450 scopus 로고    scopus 로고
    • Modeling causal error structures in longitudinal panel data: A Monte Carlo study
    • Sivo, S. A. and Wilson, V. I. 2000. Modeling causal error structures in longitudinal panel data: A Monte Carlo study. Structural Equation Modeling, 7: 174 - 205.
    • (2000) Structural Equation Modeling , vol.7 , pp. 174-205
    • Sivo, S.A.1    Wilson, V.I.2
  • 77
    • 0034412441 scopus 로고    scopus 로고
    • Design and analysis of Monte Carlo experiments: Attacking the conventional wisdom
    • Skrondal, A. 2000. Design and analysis of Monte Carlo experiments: Attacking the conventional wisdom. Multivariate Behavioral Research, 35: 137 - 167.
    • (2000) Multivariate Behavioral Research , vol.35 , pp. 137-167
    • Skrondal, A.1
  • 78
    • 17244376367 scopus 로고    scopus 로고
    • A Bayesian approach for multigroup nonlinear factor analysis
    • Song, S.-Y. and Lee, S.-Y. 2002. A Bayesian approach for multigroup nonlinear factor analysis. Structural Equation Modeling, 9: 523 - 553.
    • (2002) Structural Equation Modeling , vol.9 , pp. 523-553
    • Song, S.-Y.1    Lee, S.-Y.2
  • 79
    • 61449262802 scopus 로고    scopus 로고
    • Omitting meaningless digits in point estimates: The probability guarantee of leading-digit rules
    • Song, W. T. and Schmeiser, B. W. 2009. Omitting meaningless digits in point estimates: The probability guarantee of leading-digit rules. Operations Research, 57: 109 - 117.
    • (2009) Operations Research , vol.57 , pp. 109-117
    • Song, W.T.1    Schmeiser, B.W.2
  • 81
    • 0004172172 scopus 로고
    • Berkeley, CA, Berkeley, CA,: University of California Press
    • Ulam, S. M. 1991. Adventures of a mathematician Berkeley, CA: University of California Press.
    • (1991) Adventures of a mathematician
    • Ulam, S.M.1
  • 84
    • 0001653457 scopus 로고    scopus 로고
    • Statistical methods in psychology journals: Guidelines and explanations
    • Wilkinson L., & the Task Force on Statistical Inference
    • Wilkinson L., & the Task Force on Statistical Inference. 1999. Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54: 594 - 604.
    • (1999) American Psychologist , vol.54 , pp. 594-604
  • 85
    • 41149168270 scopus 로고    scopus 로고
    • Resampling and distribution of the product methods for testing indirect effects in complex models
    • Williams, J. and MacKinnon, D. P. 2008. Resampling and distribution of the product methods for testing indirect effects in complex models. Structural Equation Modeling, 15: 23 - 51.
    • (2008) Structural Equation Modeling , vol.15 , pp. 23-51
    • Williams, J.1    MacKinnon, D.P.2
  • 86
    • 33750372068 scopus 로고    scopus 로고
    • A Monte Carlo study of recovery of weak factor loadings in confirmatory factor analysis
    • Ximénez, C. 2006. A Monte Carlo study of recovery of weak factor loadings in confirmatory factor analysis. Structural Equation Modeling, 13: 587 - 614.
    • (2006) Structural Equation Modeling , vol.13 , pp. 587-614
    • Ximénez, C.1
  • 87
    • 77954442639 scopus 로고    scopus 로고
    • Confirmatory factor analysis of ordinal variables with misspecified models
    • Yang-Wallentin, F., Jöreskog, K. G. and Luo, H. 2010. Confirmatory factor analysis of ordinal variables with misspecified models. Structural Equation Modeling, 17: 392 - 423.
    • (2010) Structural Equation Modeling , vol.17 , pp. 392-423
    • Yang-Wallentin, F.1    Jöreskog, K.G.2    Luo, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.