메뉴 건너뛰기




Volumn 38, Issue 1, 2013, Pages 24-33

Forecasting watermain failure using artificial neural network modelling

Author keywords

[No Author keywords available]

Indexed keywords

CEMENT MORTAR LININGS; DISTRIBUTION SYSTEMS; INDEPENDENT VARIABLES; INFRASTRUCTURE MAINTENANCE; MULTIPLE LINEAR REGRESSION METHOD; PREDICTIVE CAPABILITIES; REHABILITATION PLANNING; WATER DISTRIBUTIONS;

EID: 84880940002     PISSN: 07011784     EISSN: None     Source Type: Journal    
DOI: 10.1080/07011784.2013.774153     Document Type: Article
Times cited : (57)

References (40)
  • 2
    • 56549108548 scopus 로고    scopus 로고
    • Infrastructure management: Integrated AHP/ANN model to evaluate municipal watermains' performance
    • Al-Barqawi, H., and T Zayed. 2008. "Infrastructure management: integrated AHP/ANN model to evaluate municipal watermains' performance." Journal of Infrastructure Systems 14 (4): 305-318.
    • (2008) Journal of Infrastructure Systems , vol.14 , Issue.4 , pp. 305-318
    • Al-Barqawi, H.1    Zayed, T.2
  • 4
    • 33745337472 scopus 로고    scopus 로고
    • Forecasting chlorine residuals in a water distribution system using a general regression neural network
    • Bowden, G. J., J. B. Nixon, G. C. Dandy, H. R. Maier, and M. Holmes. 2006. "Forecasting chlorine residuals in a water distribution system using a general regression neural network." Mathematical and Computer Modelling 44 (5-6): 469-484.
    • (2006) Mathematical and Computer Modelling , vol.44 , Issue.5-6 , pp. 469-484
    • Bowden, G.J.1    Nixon, J.B.2    Dandy, G.C.3    Maier, H.R.4    Holmes, M.5
  • 5
    • 0005380346 scopus 로고
    • Neural networks primer, Part III
    • Caudill, M. 1988. "Neural networks primer, Part III." AI Expert 3 (6): 53-59.
    • (1988) AI Expert , vol.3 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 7
    • 0022324572 scopus 로고
    • Updating the New York City water system
    • edited by J. P. Guyer, New York: American Society of Civil Engineers
    • Ciottoni, A. S. 1985. "Updating the New York City water system." In Proceedings of the Specialty Conference on Infrastructure for Urban Growth, edited by J. P. Guyer, 69-77. New York: American Society of Civil Engineers.
    • (1985) Proceedings of the Specialty Conference On Infrastructure For Urban Growth , pp. 69-77
    • Ciottoni, A.S.1
  • 9
    • 0024861871 scopus 로고
    • Approximation by Superpositions of a Sig-moidal Function
    • Cybenko, G. 1989. "Approximation by Superpositions of a Sig-moidal Function." Mathematics of Control, Signals, and Systems 2: 303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 11
    • 0031735568 scopus 로고    scopus 로고
    • Tutorial review: Neural networks in multivariate calibration
    • Despagne, F., and D. L. Massart. 1998. "Tutorial review: neural networks in multivariate calibration." The Analyst 123: 157R-178R.
    • (1998) The Analyst , vol.123
    • Despagne, F.1    Massart, D.L.2
  • 12
    • 0023959974 scopus 로고
    • Spatial and temporal groupings of watermain pipe breakage in Winnipeg
    • Goulter, I. C, and A. Kazemi. 1988. "Spatial and temporal groupings of watermain pipe breakage in Winnipeg." Canadian Journal of Civil Engineering 15 (1): 91-97.
    • (1988) Canadian Journal of Civil Engineering , vol.15 , Issue.1 , pp. 91-97
    • Goulter, I.C.1    Kazemi, A.2
  • 13
    • 0028103574 scopus 로고
    • Effect of temperature changes on water-main break
    • Habibian, A. 1994. "Effect of temperature changes on water-main break." Journal of Transportation Engineering 120 (2): 312-321.
    • (1994) Journal of Transportation Engineering , vol.120 , Issue.2 , pp. 312-321
    • Habibian, A.1
  • 14
    • 0026405610 scopus 로고
    • Neurobiological computational modes in structural analysis and design
    • Hajela, P., and L. Berke. 1991. "Neurobiological computational modes in structural analysis and design." Computers & Structures 41 (4): 657-667.
    • (1991) Computers & Structures , vol.41 , Issue.4 , pp. 657-667
    • Hajela, P.1    Berke, L.2
  • 15
    • 0024878952 scopus 로고
    • Theory of the back-propagation neural network
    • Washington, DC: IEEE TAB Neural Network Committee
    • Hecht-Nielsen, R. 1989. "Theory of the back-propagation neural network." Vol. 1 of Proceedings of the International Joint Conference on Neural Networks, 593-606. Washington, DC: IEEE TAB Neural Network Committee.
    • (1989) Proceedings of the International Joint Conference On Neural Networks , vol.1 , pp. 593-606
    • Hecht-Nielsen, R.1
  • 16
    • 77954144036 scopus 로고    scopus 로고
    • Use of GIS-based hybrid artificial neural network to prioritize the order of pipe replacement in a water distribution network
    • doi: 10.1007/s10661-009-0994-6
    • Ho, C. I., M. D. Lin, and S. L. Lo. 2009. "Use of GIS-based hybrid artificial neural network to prioritize the order of pipe replacement in a water distribution network." Journal of Environmental Monitoring and Assessment 166 (1-4): 177-189. doi: 10.1007/s10661-009-0994-6.
    • (2009) Journal of Environmental Monitoring and Assessment , vol.166 , Issue.1-4 , pp. 177-189
    • Ho, C.I.1    Lin, M.D.2    Lo, S.L.3
  • 17
    • 0024880831 scopus 로고
    • Multilayer Feedforward Networks are Universal Approximators
    • Hornik, K., M. Stinchcombe, and H. White. 1989. "Multilayer Feedforward Networks are Universal Approximators." Neural Networks 2 (5): 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 77649188485 scopus 로고    scopus 로고
    • Application of Artificial Neural Networks (ANN) to model the failure of urban water mains
    • Jafar, R., I. Shahrour, and I. Juran. 2010. "Application of Artificial Neural Networks (ANN) to model the failure of urban water mains." Mathematical and Computer Modelling 51 (9-10): 1170-1180.
    • (2010) Mathematical and Computer Modelling , vol.51 , Issue.9-10 , pp. 1170-1180
    • Jafar, R.1    Shahrour, I.2    Juran, I.3
  • 20
    • 0035166549 scopus 로고    scopus 로고
    • Comprehensive review of structural deterioration of watermains: Statistical models
    • Kleiner, Y, and B. Rajani. 2001. "Comprehensive review of structural deterioration of watermains: statistical models." Urban Water 3 (3): 131-150.
    • (2001) Urban Water , vol.3 , Issue.3 , pp. 131-150
    • Kleiner, Y.1    Rajani, B.2
  • 21
    • 0036921341 scopus 로고    scopus 로고
    • Forecasting variations and trends in water-main breaks
    • Kleiner, Y, and B. Rajani. 2002. "Forecasting variations and trends in water-main breaks." Journal of Infrastructure Systems 8 (4): 122-131.
    • (2002) Journal of Infrastructure Systems , vol.8 , Issue.4 , pp. 122-131
    • Kleiner, Y.1    Rajani, B.2
  • 23
    • 0003123102 scopus 로고
    • PSE & G develops models to predict main breaks
    • Lochbaum, B. S. 1993. "PSE & G develops models to predict main breaks." Pipeline & Gas Journal 20 (9): 20-27.
    • (1993) Pipeline & Gas Journal , vol.20 , Issue.9 , pp. 20-27
    • Lochbaum, B.S.1
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R., and G. C. Dandy. 2000. "Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications." Environmental Modelling and Software 15: 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0034283417 scopus 로고    scopus 로고
    • Classification of defects in sewer pipes using neural networks
    • Moselhi, O., and T. Shehab-Eldeen. 2000. "Classification of defects in sewer pipes using neural networks." Journal of Infrastructure Systems 6 (3): 97-105.
    • (2000) Journal of Infrastructure Systems , vol.6 , Issue.3 , pp. 97-105
    • Moselhi, O.1    Shehab-Eldeen, T.2
  • 26
    • 0029723312 scopus 로고    scopus 로고
    • Neural network approach for site characterization and uncertainty prediction
    • Najjar, Y. M., and I. A. Basheer. 1996. "Neural network approach for site characterization and uncertainty prediction." ASCE Geotechnical Special Publication 58 (1): 134-148.
    • (1996) ASCE Geotechnical Special Publication , vol.58 , Issue.1 , pp. 134-148
    • Najjar, Y.M.1    Basheer, I.A.2
  • 28
    • 0347656601 scopus 로고
    • Why gas mains fail, Part 1
    • Needham, D., and M. Howe. 1981. "Why gas mains fail, Part 1." Pipe Line Industry 55: 47-50.
    • (1981) Pipe Line Industry , vol.55 , pp. 47-50
    • Needham, D.1    Howe, M.2
  • 29
    • 0001558139 scopus 로고
    • Factors influencing the occurrence of bursts in iron watermains
    • Newport, R. 1981. "Factors influencing the occurrence of bursts in iron watermains." Water Supply and Management 3: 274-278.
    • (1981) Water Supply and Management , vol.3 , pp. 274-278
    • Newport, R.1
  • 30
    • 0020205298 scopus 로고
    • Organizing and analyzing leak and break data for making main replacement decisions
    • O'Day, D. K. 1982. "Organizing and analyzing leak and break data for making main replacement decisions." Journal of the American Water Works Association 74 (11): 589-594.
    • (1982) Journal of the American Water Works Association , vol.74 , Issue.11 , pp. 589-594
    • O'Day, D.K.1
  • 32
    • 84880950131 scopus 로고    scopus 로고
    • The Whig. Accessed May 2012
    • Press, J. 2009. Water main breaks shifting. The Whig. Accessed May 2012. http://www.thewhig.com/ArticleDisplay.aspx?e=1474179&archive=true.
    • (2009) Water Main Breaks Shifting
    • Press, J.1
  • 33
    • 69249089783 scopus 로고    scopus 로고
    • Failure assessment modelling to prioritize water pipe renewal: Two case studies
    • Rogers P. D. and N. S. Grigg. 2009. "Failure assessment modelling to prioritize water pipe renewal: Two case studies." Journal of Infrastructure Systems 15 (3): 162-171.
    • (2009) Journal of Infrastructure Systems , vol.15 , Issue.3 , pp. 162-171
    • Rogers, P.D.1    Grigg, N.S.2
  • 35
    • 42149106809 scopus 로고    scopus 로고
    • Impacts of cathodic protection on pipe break probabilities: A Toronto case study
    • Schuster, C, and E. McBean. 2008. "Impacts of cathodic protection on pipe break probabilities: A Toronto case study." Canadian Journal of Civil Engineering 35: 210-216.
    • (2008) Canadian Journal of Civil Engineering , vol.35 , pp. 210-216
    • Schuster, C.1    McBean, E.2
  • 37
    • 19944393836 scopus 로고    scopus 로고
    • Artificial neural network based settlement prediction formula for shallow foundations on granular soils
    • Shahin, M. A., M. B. Jaksa, and H. R. Maier. 2002. "Artificial neural network based settlement prediction formula for shallow foundations on granular soils." Australian Geome-chanics 37 (4): 45-52.
    • (2002) Australian Geome-chanics , vol.37 , Issue.4 , pp. 45-52
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 39
    • 58649092009 scopus 로고    scopus 로고
    • Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modelling
    • Tabesh, M., J. Soltani, R. Farmani and D. Savic. 2009, Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modelling. Journal of Hydroinformatics (11)1: 1-17.
    • (2009) Journal of Hydroinformatics , vol.11 , Issue.1 , pp. 1-17
    • Tabesh, M.1    Soltani, J.2    Farmani, R.3    Savic, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.