메뉴 건너뛰기




Volumn 20, Issue 9, 2013, Pages 889-892

An improved auto-calibration algorithm based on sparse bayesian learning framework

Author keywords

Auto calibration; compressive sensing; multiplicative perturbation; sparse Bayesian framework

Indexed keywords

AUTO CALIBRATION; COMPRESSIVE SENSING; MULTIPLICATIVE PERTURBATION; NUMERICAL EXPERIMENTS; PERTURBATION PROBLEMS; PROBABILISTIC MODELS; SPARSE BAYESIAN; SPARSE BAYESIAN LEARNING;

EID: 84880816284     PISSN: 10709908     EISSN: None     Source Type: Journal    
DOI: 10.1109/LSP.2013.2272462     Document Type: Article
Times cited : (60)

References (14)
  • 1
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling
    • Mar
    • E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.
    • (2008) IEEE Signal Process. Mag , vol.25 , Issue.2 , pp. 21-30
    • Candes, E.J.1    Wakin, M.B.2
  • 2
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping, "Sparse bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, Sep. 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 3
    • 3543103176 scopus 로고    scopus 로고
    • Sparse bayesian learning for basis selection
    • Aug
    • D.Wipf and B. D. Rao, "Sparse bayesian learning for basis selection," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153-2164, Aug. 2004.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.8 , pp. 2153-2164
    • Wipf, D.1    Rao, B.D.2
  • 4
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • DOI 10.1109/TSP.2007.914345
    • S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, Jun. 2008. (Pubitemid 351795888)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 5
    • 34347400802 scopus 로고    scopus 로고
    • An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
    • DOI 10.1109/TSP.2007.894265
    • D. Wipf and B. D. Rao, "An empirical bayesian strategy for solving the simultaneous sparse approximation problem," IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, Jul. 2007. (Pubitemid 47018850)
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.7 II , pp. 3704-3716
    • Wipf, D.P.1    Rao, B.D.2
  • 6
    • 77949674991 scopus 로고    scopus 로고
    • General deviants: An analysis of perturbations in compressed sensing
    • Apr
    • M. A. Herman and T. Strohmer, "General deviants: An analysis of perturbations in compressed sensing," IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 342-349, Apr. 2010.
    • (2010) IEEE J. Sel. Topics Signal Process , vol.4 , Issue.2 , pp. 342-349
    • Herman, M.A.1    Strohmer, T.2
  • 7
    • 84865253214 scopus 로고    scopus 로고
    • Robustly stable signal recovery in compressed sensing with structured matrix perturbation
    • Sep
    • Z. Yang, C. Zhang, and L. Xie, "Robustly stable signal recovery in compressed sensing with structured matrix perturbation," IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4658-4671, Sep. 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.9 , pp. 4658-4671
    • Yang, Z.1    Zhang, C.2    Xie, L.3
  • 8
    • 84861309126 scopus 로고    scopus 로고
    • Compressive sensing under matrix uncertainties: An approximate message passing approach
    • IEEE
    • J. T. Parker, V. Cevher, and P. Schniter, "Compressive sensing under matrix uncertainties: An approximate message passing approach," in 2011 Conf. ASILOMAR, 2011, pp. 804-808, IEEE.
    • (2011) 2011 Conf. ASILOMAR , pp. 804-808
    • Parker, J.T.1    Cevher, V.2    Schniter, P.3
  • 9
    • 0000403425 scopus 로고    scopus 로고
    • Sensor-array calibration using a maximum-likelihood approach
    • PII S0018926X96042809
    • B. C.Ng and C. M. S. See, "Sensor-array calibration using amaximumlikelihood approach," IEEE Trans. Antennas Propag., vol. 44, no. 6, pp. 827-835, Jun. 1996. (Pubitemid 126780730)
    • (1996) IEEE Transactions on Antennas and Propagation , vol.44 , Issue.6 PART 1 , pp. 827-835
    • Ng, B.C.1    Samson, C.M.2
  • 10
    • 80255124801 scopus 로고    scopus 로고
    • Bayesian inverse synthetic aperture radar imaging
    • Nov
    • G. Xu, M. Xing, L. Zhang, Y. Liu, and Y. Li, "Bayesian inverse synthetic aperture radar imaging," IEEE Geosci. Remote Sensing Lett., vol. 8, no. 6, pp. 1150-1154, Nov. 2011.
    • (2011) IEEE Geosci. Remote Sensing Lett , vol.8 , Issue.6 , pp. 1150-1154
    • Xu, G.1    Xing, M.2    Zhang, L.3    Liu, Y.4    Li, Y.5
  • 11
    • 84867604284 scopus 로고    scopus 로고
    • Blind calibration for compressed sensing by convex optimization
    • R. Gribonval, G. Chardon, and L. Daudet, "Blind calibration for compressed sensing by convex optimization," in Proc. ICASSP, 2012.
    • (2012) Proc. ICASSP
    • Gribonval, R.1    Chardon, G.2    Daudet, L.3
  • 12
    • 72949095917 scopus 로고    scopus 로고
    • Bayesian compressive sensing using laplace priors
    • Jan
    • S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Bayesian compressive sensing using laplace priors," IEEE Trans. Image Process., vol. 19, no. 1, pp. 53-63, Jan. 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.1 , pp. 53-63
    • Babacan, S.D.1    Molina, R.2    Katsaggelos, A.K.3
  • 13
    • 85032751295 scopus 로고    scopus 로고
    • The variational approximation for bayesian inference
    • Nov
    • D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, "The variational approximation for bayesian inference," IEEE Signal Process. Mag., vol. 25, no. 6, pp. 131-146, Nov. 2008.
    • (2008) IEEE Signal Process. Mag , vol.25 , Issue.6 , pp. 131-146
    • Tzikas, D.G.1    Likas, A.C.2    Galatsanos, N.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.