메뉴 건너뛰기




Volumn 40, Issue 2, 2013, Pages 189-199

Two general methods for population pharmacokinetic modeling: Non-parametric adaptive grid and non-parametric Bayesian

Author keywords

Bayesian; Maximum likelihood; Non parametric; Pmetrics; Population pharmacokinetic modeling; RJags; Stick breaking

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; CALCULATION; INTERMETHOD COMPARISON; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MAXIMUM LIKELIHOOD METHOD; NONPARAMETRIC ADAPTIVE GRID MODEL; NONPARAMETRIC BAYESIAN MODEL; PHARMACOKINETICS; POPULATION DISTRIBUTION; PRIORITY JOURNAL; PROCESS MODEL; PROCESS OPTIMIZATION; SIMULATION;

EID: 84880698337     PISSN: 1567567X     EISSN: 15738744     Source Type: Journal    
DOI: 10.1007/s10928-013-9302-8     Document Type: Article
Times cited : (74)

References (43)
  • 2
    • 0020388877 scopus 로고
    • Estimating population kinetics
    • Beal S, Sheiner L (1982) Estimating population kinetics. Crit Rev Biomed Eng 8(3):95-222
    • (1982) Crit Rev Biomed Eng , vol.8 , Issue.3 , pp. 95-222
    • Beal, S.1    Sheiner, L.2
  • 4
    • 34047215761 scopus 로고    scopus 로고
    • Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software
    • 17211713 10.1007/s10928-006-9043-z 1:CAS:528:DC%2BD2sXjs1ektb8%3D
    • Lavielle M, Mentré F (2007) Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. J Pharmacokinet Pharmacodyn 34(2):229-249
    • (2007) J Pharmacokinet Pharmacodyn , vol.34 , Issue.2 , pp. 229-249
    • Lavielle, M.1    Mentré, F.2
  • 6
    • 34547188255 scopus 로고    scopus 로고
    • Nonlinear random effects mixture models: Maximum likelihood estimation via the em algorithm
    • 19756256 10.1016/j.csda.2007.03.008
    • Wang A, Schumitzky A, DArgenio D (2007) Nonlinear random effects mixture models: maximum likelihood estimation via the EM algorithm. Comput Stat Data Anal 51:6614-6623
    • (2007) Comput Stat Data Anal , vol.51 , pp. 6614-6623
    • Wang, A.1    Schumitzky, A.2    Dargenio, D.3
  • 7
    • 69449085353 scopus 로고    scopus 로고
    • Population pharmacokinet-ic/pharmacodyanamic mixture models via maximum a posteriori estimation
    • 20161085 10.1016/j.csda.2009.04.017
    • Wang A, Schumitzky A, DArgenio D (2009) Population pharmacokinet-ic/ pharmacodyanamic mixture models via maximum a posteriori estimation. Comput Stat Data Anal 53:3907
    • (2009) Comput Stat Data Anal , vol.53 , pp. 3907
    • Wang, A.1    Schumitzky, A.2    Dargenio, D.3
  • 8
    • 0000525359 scopus 로고
    • The geometry of mixture likelihoods: A general theory
    • 10.1214/aos/1176346059
    • Lindsay B (1983) The geometry of mixture likelihoods: a general theory. Ann Stat 11:86-94
    • (1983) Ann Stat , vol.11 , pp. 86-94
    • Lindsay, B.1
  • 9
    • 0001700822 scopus 로고
    • A maximum likelihood estimation method for random coefficient regression models
    • 10.1093/biomet/73.3.645
    • Mallet A (1986) A maximum likelihood estimation method for random coefficient regression models. Biometrika 73:645-656
    • (1986) Biometrika , vol.73 , pp. 645-656
    • Mallet, A.1
  • 10
    • 0000284439 scopus 로고
    • Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters
    • 10.1214/aoms/1177728066
    • Kiefer J, Wolfowitz J (1956) Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann Math Stat 27(4):887-906
    • (1956) Ann Math Stat , vol.27 , Issue.4 , pp. 887-906
    • Kiefer, J.1    Wolfowitz, J.2
  • 11
    • 79551610253 scopus 로고    scopus 로고
    • Two bootstrapping routines for obtaining imprecision estimates for nonparametric parameter distributions in nonlinear mixed effects models
    • 21076858 10.1007/s10928-010-9177-x
    • Baverel P, Savic R, Karlsson M (2011) Two bootstrapping routines for obtaining imprecision estimates for nonparametric parameter distributions in nonlinear mixed effects models. J Pharmacokinet Pharmacodyn 38(1):63-82
    • (2011) J Pharmacokinet Pharmacodyn , vol.38 , Issue.1 , pp. 63-82
    • Baverel, P.1    Savic, R.2    Karlsson, M.3
  • 14
    • 0030726288 scopus 로고    scopus 로고
    • Bayesian nonparametric population models: Formulation and comparison with likelihood approaches
    • 9408861 10.1023/A:1025736230707 1:CAS:528:DyaK2sXotVClsLw%3D
    • Wakefield J, Walker S (1997) Bayesian nonparametric population models: formulation and comparison with likelihood approaches. J Pharmacokinet Biopharm 25:235-253
    • (1997) J Pharmacokinet Biopharm , vol.25 , pp. 235-253
    • Wakefield, J.1    Walker, S.2
  • 15
    • 0242629909 scopus 로고    scopus 로고
    • Population models with a nonparametric random coefficient distribution
    • Wakefield J, Walker S (1998) Population models with a nonparametric random coefficient distribution. Sankhya Ser B 60:196-212
    • (1998) Sankhya ser B , vol.60 , pp. 196-212
    • Wakefield, J.1    Walker, S.2
  • 16
    • 0038909620 scopus 로고    scopus 로고
    • A Bayesian population model with hierarchical mixture priors applied to blood count data
    • Mueller P, Rosner G (1997) A Bayesian population model with hierarchical mixture priors applied to blood count data. J Am Stat Assoc 92:1279-1292
    • (1997) J Am Stat Assoc , vol.92 , pp. 1279-1292
    • Mueller, P.1    Rosner, G.2
  • 17
    • 0030683646 scopus 로고    scopus 로고
    • Bayesian population pharmacokinetic and pharmacodynamic analyses using mixture models
    • 9408860 10.1023/A:1025784113869 1:CAS:528:DyaK2sXotVClsrc%3D
    • Rosner G, Mueller P (1997) Bayesian population pharmacokinetic and pharmacodynamic analyses using mixture models. J Pharmacokinet Biopharm 25:209-233
    • (1997) J Pharmacokinet Biopharm , vol.25 , pp. 209-233
    • Rosner, G.1    Mueller, P.2
  • 18
    • 77349086881 scopus 로고    scopus 로고
    • Dirichlet processes in nonlinear mixed effects models
    • 10.1080/03610910903511745
    • Wang J (2010) Dirichlet processes in nonlinear mixed effects models. Commun Stat Simul Comput 39:539-556
    • (2010) Commun Stat Simul Comput , vol.39 , pp. 539-556
    • Wang, J.1
  • 19
    • 84880697172 scopus 로고    scopus 로고
    • The nonparametric adaptive grid algorithm for population pharmacokinetic modeling
    • Laboratory of Applied Pharmacokinetics
    • Yamada Y, Bartroff J, Bayard D, Burke J, Van Guilder M, et al. (2012) The nonparametric adaptive grid algorithm for population pharmacokinetic modeling. Technical Report, LAPK, USC, Laboratory of Applied Pharmacokinetics
    • (2012) Technical Report, LAPK, USC
    • Yamada, Y.1    Bartroff, J.2    Bayard, D.3    Burke, J.4    Van Guilder, M.5
  • 21
    • 84863817675 scopus 로고    scopus 로고
    • Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R
    • 22722776 10.1097/FTD.0b013e31825c4ba6
    • Neely M, van Guilder M, Yamada W, Schumitzky A, Jelliffe R (2012) Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther Drug Monit 34(4):467-476
    • (2012) Ther Drug Monit , vol.34 , Issue.4 , pp. 467-476
    • Neely, M.1    Van Guilder, M.2    Yamada, W.3    Schumitzky, A.4    Jelliffe, R.5
  • 22
    • 33745603097 scopus 로고    scopus 로고
    • Parametric and nonparametric population methods: Their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies
    • 16584284 10.2165/00003088-200645040-00003
    • Bustad A, Terziivanov D, Leary R, Port R, Schumitzky A, Jelliffe R (2006) Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Clin Pharmacokinet 45(4):365-383
    • (2006) Clin Pharmacokinet , vol.45 , Issue.4 , pp. 365-383
    • Bustad, A.1    Terziivanov, D.2    Leary, R.3    Port, R.4    Schumitzky, A.5    Jelliffe, R.6
  • 23
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling methods for stick-breaking priors
    • 10.1198/016214501750332758
    • Ishwaran H, James L (2001) Gibbs sampling methods for stick-breaking priors. J Am Stat Assoc 96:161-173
    • (2001) J Am Stat Assoc , vol.96 , pp. 161-173
    • Ishwaran, H.1    James, L.2
  • 24
    • 0034078273 scopus 로고    scopus 로고
    • Achieving target goals most precisely using nonparametric compartmental models and "multiple model" design of dosage regimens
    • 10850404 10.1097/00007691-200006000-00018 1:STN:280: DC%2BD3cvmtVymtg%3D%3D
    • Jelliffe R, Bayard D, Milman M, Van Guilder M, Schumitzky A (2000) Achieving target goals most precisely using nonparametric compartmental models and "multiple model" design of dosage regimens. Ther Drug Monit 22:346-353
    • (2000) Ther Drug Monit , vol.22 , pp. 346-353
    • Jelliffe, R.1    Bayard, D.2    Milman, M.3    Van Guilder, M.4    Schumitzky, A.5
  • 25
    • 0000875518 scopus 로고
    • Nonparametric em algorithms for estimating prior distributions
    • 10.1016/0096-3003(91)90077-Z
    • Schumitzky A (1991) Nonparametric EM algorithms for estimating prior distributions. Appl Math Comput 45:141-157
    • (1991) Appl Math Comput , vol.45 , pp. 141-157
    • Schumitzky, A.1
  • 27
    • 84863856010 scopus 로고    scopus 로고
    • PhD Dissertation, Thesis supervisor: Prof. James Burke, University of Washington, Department of Mathematics
    • Baek Y (2006) An interior point approach to constrained nonparametric mixture models. PhD Dissertation, Thesis supervisor: Prof. James Burke, University of Washington, Department of Mathematics
    • (2006) An Interior Point Approach to Constrained Nonparametric Mixture Models
    • Baek, Y.1
  • 28
    • 0022954116 scopus 로고
    • Algorithm 647: Implementation and relative efficiency of Quasirandom sequence generators
    • 10.1145/22721.356187
    • Fox BL (1986) Algorithm 647: implementation and relative efficiency of Quasirandom sequence generators. Trans Math Softw 12(4):362-376
    • (1986) Trans Math Softw , vol.12 , Issue.4 , pp. 362-376
    • Fox, B.L.1
  • 31
    • 40249114903 scopus 로고    scopus 로고
    • Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models
    • 10.1093/biomet/asm086
    • Papaspiliopoulos O, Roberts GO (2008) Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95(1):169-186
    • (2008) Biometrika , vol.95 , Issue.1 , pp. 169-186
    • Papaspiliopoulos, O.1    Roberts, G.O.2
  • 32
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • Sethuraman J (1994) A constructive definition of Dirichlet priors. Statistica Sinica 4:639-650
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 34
    • 51949103103 scopus 로고    scopus 로고
    • Kullback-Leibler Markov chain Monte Carlo - A new algorithm for finite mixture analysis and its application to gene expression data
    • 18763739 10.1142/S0219720008003710 1:CAS:528:DC%2BD1cXhtFeitb%2FN
    • Tatarinova T, Bouck J, Schumitzky A (2008) Kullback-Leibler Markov chain Monte Carlo - a new algorithm for finite mixture analysis and its application to gene expression data. J Bioinform Comput Biol 6(4):727-746
    • (2008) J Bioinform Comput Biol , vol.6 , Issue.4 , pp. 727-746
    • Tatarinova, T.1    Bouck, J.2    Schumitzky, A.3
  • 36
    • 33847712948 scopus 로고    scopus 로고
    • A semiparametric Bayesian approach to average bioequivalence
    • 16832840 10.1002/sim.2620
    • Ghosh P, Rosner G (2007) A semiparametric Bayesian approach to average bioequivalence. Stat Med 26:1224-1236
    • (2007) Stat Med , vol.26 , pp. 1224-1236
    • Ghosh, P.1    Rosner, G.2
  • 37
    • 34047215010 scopus 로고    scopus 로고
    • Flexible random-effects models using Bayesian semi-parametric models: Applications to institutional comparisons
    • 16906554 10.1002/sim.2666 1:STN:280:DC%2BD2s3lsFamtA%3D%3D
    • Ohlssen D, Sharples L, Spiegelhalter D (2007) Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Stat Med 26:2088-2112
    • (2007) Stat Med , vol.26 , pp. 2088-2112
    • Ohlssen, D.1    Sharples, L.2    Spiegelhalter, D.3
  • 38
    • 33847707418 scopus 로고    scopus 로고
    • Sampling the Dirichlet mixture model with slices
    • 10.1080/03610910601096262
    • Walker S (2007) Sampling the Dirichlet mixture model with slices. Commun Stat Simul Comput 36:45-54
    • (2007) Commun Stat Simul Comput , vol.36 , pp. 45-54
    • Walker, S.1
  • 39
    • 78650307472 scopus 로고    scopus 로고
    • Slice sampling mixture models
    • 10.1007/s11222-009-9150-y
    • Kalli M, Griffen J, Walker S (2011) Slice sampling mixture models. Stat Comput 21:93-105
    • (2011) Stat Comput , vol.21 , pp. 93-105
    • Kalli, M.1    Griffen, J.2    Walker, S.3
  • 43
    • 70350094855 scopus 로고    scopus 로고
    • Hjort N, Holmes C, Muller P, Walker S (eds) Bayesian nonparametrics. Cambridge University Press, Cambridge, pp 223-268
    • Dunson D (2010) Nonparametric Bayes applications to biostatistics. In: Hjort N, Holmes C, Muller P, Walker S (eds) Bayesian nonparametrics. Cambridge University Press, Cambridge, pp 223-268
    • (2010) Nonparametric Bayes Applications to Biostatistics
    • Dunson, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.