메뉴 건너뛰기




Volumn 6, Issue 4, 2008, Pages 727-746

Kullback-Leibler Markov chain Monte Carlo - A new algorithm for finite mixture analysis and its application to gene expression data

Author keywords

Birth death MCMC; Clustering; Gene expression; Gibbs sampling; Kullback Leibler distance; Nonlinear mixture models; Permutation sampling

Indexed keywords

ALGORITHM; BAYES THEOREM; CLUSTER ANALYSIS; COMPUTER ANALYSIS; CONCEPTUAL FRAMEWORK; CONFERENCE PAPER; FINITE ELEMENT ANALYSIS; GENE CLUSTER; GENE EXPRESSION; MATHEMATICAL ANALYSIS; MATHEMATICAL COMPUTING; MONTE CARLO METHOD; NONLINEAR SYSTEM; PROBABILITY; STATISTICAL ANALYSIS;

EID: 51949103103     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720008003710     Document Type: Conference Paper
Times cited : (4)

References (33)
  • 1
    • 0003606575 scopus 로고
    • A generic approach to posterior integration and Gibbs sampling
    • Technical Report, Purdue University, West Lafayette, IN
    • Müller P, A generic approach to posterior integration and Gibbs sampling, Technical Report, Purdue University, West Lafayette, IN, 1990.
    • (1990)
    • Müller, P.1
  • 3
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux G, Hurn M, Robert CP, Computational and inferential difficulties with mixture posterior distributions, J Am Stat Assoc 95 957-970, 2000.
    • (2000) J Am Stat Assoc , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 4
    • 1842815959 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models
    • Fruhwirth-Schnatter S, Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models, J Am Stat Assoc 96 (453):194-209, 2001.
    • (2001) J Am Stat Assoc , vol.96 , Issue.453 , pp. 194-209
    • Fruhwirth-Schnatter, S.1
  • 5
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components - An alternative to reversible jump methods
    • Stephens M, Bayesian analysis of mixture models with an unknown number of components - An alternative to reversible jump methods, Ann Stat 28(1):40-74, 2000.
    • (2000) Ann Stat , vol.28 , Issue.1 , pp. 40-74
    • Stephens, M.1
  • 6
    • 0000228370 scopus 로고    scopus 로고
    • Contribution to the discussion of paper by Richardson and Green
    • Stephens M, Contribution to the discussion of paper by Richardson and Green, J R Stat Soc Ser B 59:768-769, 1997.
    • (1997) J R Stat Soc Ser B , vol.59 , pp. 768-769
    • Stephens, M.1
  • 8
    • 0034354410 scopus 로고    scopus 로고
    • Dealing with label switching in mixture models
    • Stephens M, Dealing with label switching in mixture models, J R Stat Soc Ser B 62:795-809, 2000.
    • (2000) J R Stat Soc Ser B , vol.62 , pp. 795-809
    • Stephens, M.1
  • 9
    • 0038239484 scopus 로고    scopus 로고
    • A fast distance based approach for determining the number of components in mixtures
    • Sahu SK, Cheng RCH, A fast distance based approach for determining the number of components in mixtures, Can J Stat 31(1):3-22, 2003.
    • (2003) Can J Stat , vol.31 , Issue.1 , pp. 3-22
    • Sahu, S.K.1    Cheng, R.C.H.2
  • 10
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • Casella G, George EI, Explaining the Gibbs sampler, Am Stat 46 167-174, 1992.
    • (1992) Am Stat , vol.46 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 13
    • 84958980429 scopus 로고    scopus 로고
    • Point estimation using the Kullback-Leibler loss function and MML
    • Pacific-Asia Conference on Knowledge Discovery and Data Mining PAKDD98, Springer-Verlag, Berlin, pp
    • Dowe DL, Baxter RA, Oliver JJ, Wallace CS, Point estimation using the Kullback-Leibler loss function and MML, Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD98), Vol. 1394, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, pp. 87-95, 1998.
    • (1998) Lecture Notes in Artificial Intelligence , vol.1394 , pp. 87-95
    • Dowe, D.L.1    Baxter, R.A.2    Oliver, J.J.3    Wallace, C.S.4
  • 14
    • 51949085786 scopus 로고    scopus 로고
    • Message from Monte Carlo
    • Technical Report 107, School of Computer Science and Software Engineering, Monash University, Clayton, Victoria, Australia
    • Fitzgibbon LJ, Dowe DL, Allison L, Message from Monte Carlo, Technical Report 107, School of Computer Science and Software Engineering, Monash University, Clayton, Victoria, Australia, 2002.
    • (2002)
    • Fitzgibbon, L.J.1    Dowe, D.L.2    Allison, L.3
  • 16
    • 27744518228 scopus 로고    scopus 로고
    • Modeling gene expression over time: Curve clustering with informative prior distribution
    • Wakefield JC, Zhou C, Self C, Modeling gene expression over time: Curve clustering with informative prior distribution, Bayesian Stat 7 721-732, 2003.
    • (2003) Bayesian Stat , vol.7 , pp. 721-732
    • Wakefield, J.C.1    Zhou, C.2    Self, C.3
  • 18
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • MacQueen JB, Some methods for classification and analysis of multivariate observations, Proc Fifth Berkeley Symp Math Stat Probab 1:281-297, 1967.
    • (1967) Proc Fifth Berkeley Symp Math Stat Probab , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 19
    • 0001138328 scopus 로고
    • K-means clustering algorithm
    • Hartigan JA, Wong MA, A K-means clustering algorithm, Appl Stat 28:126-130, 1979.
    • (1979) Appl Stat , vol.28 , pp. 126-130
    • Hartigan, J.A.1    Wong2    MA, A.3
  • 20
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T, The self-organizing map, Proc IEEE 78:1464-1480, 1990.
    • (1990) Proc IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 22
    • 0033657261 scopus 로고    scopus 로고
    • Principal components analysis to summarize microarray experiments: Application to sporulation time series
    • Raychaudhuri S, Stuart JM, Altman RB, Principal components analysis to summarize microarray experiments: Application to sporulation time series, Pac Symp Biocomput: 455-466, 2000.
    • (2000) Pac Symp Biocomput , pp. 455-466
    • Raychaudhuri, S.1    Stuart, J.M.2    Altman, R.B.3
  • 23
    • 51949097957 scopus 로고    scopus 로고
    • Yeung KY, Ruzzo WL, An empirical study on principal component analysis for clustering gene expression data, Technical Report UW-CSE-00-11-03, Dept. of Computer Science and Engineering, University of Washington, Seattle, WA, 2000.
    • Yeung KY, Ruzzo WL, An empirical study on principal component analysis for clustering gene expression data, Technical Report UW-CSE-00-11-03, Dept. of Computer Science and Engineering, University of Washington, Seattle, WA, 2000.
  • 24
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O, Brown PO, Botstein D, Singular value decomposition for genome-wide expression data processing and modeling, Proc Natl Acad Sci USA 97:10101-10106, 2000.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 26
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung KY, Raley C, Murua A, Raftery AE, Ruzzo WL, Model-based clustering and data transformations for gene expression data, Bioinformatics 17:977-987, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Raley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 27
    • 51949101083 scopus 로고    scopus 로고
    • Software for model-based clustering, density estimation and discriminant analysis
    • MCLUST:, Technical Report, Department of Statistics, University of Washington, Seattle, Seattle, WA
    • Fraley C, Raftery AE, MCLUST: Software for model-based clustering, density estimation and discriminant analysis, Technical Report, Department of Statistics, University of Washington, Seattle, WA, 2007.
    • (2007)
    • Fraley, C.1    Raftery, A.E.2
  • 28
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE, Model-based clustering, discriminant analysis, and density estimation, J Am Stat Assoc 97:611-631, 2002.
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 29
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan GJ, Bean RW, Peel D, A mixture model-based approach to the clustering of microarray expression data, Bioinformatics 18 413-422, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 30
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model based clustering of gene expression profiles
    • Medvedovic M, Sivaganesan S, Bayesian infinite mixture model based clustering of gene expression profiles, Bioinformatics 18 1194-1206, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 31
    • 3042686005 scopus 로고    scopus 로고
    • Bayesian mixture model based clustering of replicated microarray data
    • Medvedovic M, Yeung KY, Bumgarner RE, Bayesian mixture model based clustering of replicated microarray data, Bioinformatics 20 1222-1232, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 1222-1232
    • Medvedovic, M.1    Yeung, K.Y.2    Bumgarner, R.E.3
  • 32
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • Tseng GC, Wong WH, Tight clustering: A resampling-based approach for identifying stable and tight patterns in data, Biometrics 61 10-16, 2005.
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 33
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC, Evaluation and comparison of gene clustering methods in microarray analysis, Bioinformatics 22:2405-2412, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1    Mukhopadhyay, I.2    Zheng, X.3    Tseng, G.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.