-
1
-
-
35548942611
-
Tether and trap: Regulation of membrane-raft dynamics by actin-binding proteins
-
Viola A, Gupta N. Tether and trap: Regulation of membrane-raft dynamics by actin-binding proteins. Nat Rev Immunol, 2007, 7: 889-896.
-
(2007)
Nat Rev Immunol
, vol.7
, pp. 889-896
-
-
Viola, A.1
Gupta, N.2
-
3
-
-
0035263288
-
Stimulation of β1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase
-
Yasuda M, Tanaka Y, Tamura M, et al. Stimulation of β1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase. Cancer Res, 2001, 61: 2022-2030.
-
(2001)
Cancer Res
, vol.61
, pp. 2022-2030
-
-
Yasuda, M.1
Tanaka, Y.2
Tamura, M.3
-
4
-
-
0344708475
-
Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain
-
Hemler M E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol, 2003, 19: 397-422.
-
(2003)
Annu Rev Cell Dev Biol
, vol.19
, pp. 397-422
-
-
Hemler, M.E.1
-
5
-
-
28444441957
-
Tetraspanin functions and associated microdomains
-
Hemler M E. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol, 2005, 6: 801-811.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 801-811
-
-
Hemler, M.E.1
-
6
-
-
33845975257
-
Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts
-
Naour F L, André M, Boucheix C, et al. Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics, 2006, 6: 6447-6454.
-
(2006)
Proteomics
, vol.6
, pp. 6447-6454
-
-
Naour, F.L.1
André, M.2
Boucheix, C.3
-
7
-
-
33745235141
-
Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-Å resolution
-
Min G W, Wang H B, Sun T T, et al. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-Å resolution. J Cell Biol, 2006, 173: 975-983.
-
(2006)
J Cell Biol
, vol.173
, pp. 975-983
-
-
Min, G.W.1
Wang, H.B.2
Sun, T.T.3
-
8
-
-
56149120891
-
Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms
-
Barreiro O, Zamai M, Yáñez-Mó M, et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol, 2008, 183: 527-542.
-
(2008)
J Cell Biol
, vol.183
, pp. 527-542
-
-
Barreiro, O.1
Zamai, M.2
Yáñez-Mó, M.3
-
9
-
-
0030878409
-
Perspectives series: Cell adhesion in vascular biology. Integrin signaling in vascular biology
-
Shattil S J, Ginsberg M H. Perspectives series: Cell adhesion in vascular biology. Integrin signaling in vascular biology. J Clin Invest, 1997, 100: 1-5.
-
(1997)
J Clin Invest
, vol.100
, pp. 1-5
-
-
Shattil, S.J.1
Ginsberg, M.H.2
-
10
-
-
34248225277
-
Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods
-
Durr N J, Larson T, Smith D K, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett, 2007, 7: 941-945.
-
(2007)
Nano Lett
, vol.7
, pp. 941-945
-
-
Durr, N.J.1
Larson, T.2
Smith, D.K.3
-
11
-
-
27644447874
-
In vitro and in vivo two-photon luminescence imaging of single gold nanorods
-
Wang H F, Huff T B, Zweifel D A, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA, 2005, 102: 15752-15756.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 15752-15756
-
-
Wang, H.F.1
Huff, T.B.2
Zweifel, D.A.3
-
12
-
-
70449397729
-
Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence
-
Tong L, He W, Zhang Y S, et al. Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence. Langmuir, 2009, 25: 12454-12459.
-
(2009)
Langmuir
, vol.25
, pp. 12454-12459
-
-
Tong, L.1
He, W.2
Zhang, Y.S.3
-
13
-
-
33244457595
-
Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
-
Huang X, El-Sayed I H, Qin W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128: 2115-2120.
-
(2006)
J Am Chem Soc
, vol.128
, pp. 2115-2120
-
-
Huang, X.1
El-Sayed, I.H.2
Qin, W.3
-
14
-
-
66449137797
-
Gastrin releasing protein receptor specific gold nanorods: Breast and prostate tumor avid nanovectors for molecular imaging
-
Chanda N, Shukla R, Katti K V, et al. Gastrin releasing protein receptor specific gold nanorods: Breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett, 2009, 9: 1798-1805.
-
(2009)
Nano Lett
, vol.9
, pp. 1798-1805
-
-
Chanda, N.1
Shukla, R.2
Katti, K.V.3
-
15
-
-
69249157205
-
SERS imaging of HER2-over expressed MCF7 cells using antibody-conjugated gold nanorods
-
Park H, Lee S, Chen L, et al. SERS imaging of HER2-over expressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys, 2009, 11: 7444-7449.
-
(2009)
Phys Chem Chem Phys
, vol.11
, pp. 7444-7449
-
-
Park, H.1
Lee, S.2
Chen, L.3
-
16
-
-
22944464695
-
Fine-tuning the shape of gold nanorods
-
Guo L F, Murphy C J. Fine-tuning the shape of gold nanorods. Chem Mater, 2005, 17: 3668-3672.
-
(2005)
Chem Mater
, vol.17
, pp. 3668-3672
-
-
Guo, L.F.1
Murphy, C.J.2
-
17
-
-
41749122608
-
Tuning the morphology of gold nanocrystals by switching the growth of {110} facets from restriction to preference
-
Xiang Y J, Wu X C, Liu D F, et al. Tuning the morphology of gold nanocrystals by switching the growth of {110} facets from restriction to preference. J Phys Chem C, 2008, 112: 3203-3208.
-
(2008)
J Phys Chem C
, vol.112
, pp. 3203-3208
-
-
Xiang, Y.J.1
Wu, X.C.2
Liu, D.F.3
-
18
-
-
0035797987
-
Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods
-
Nikoobakht B, El-Sayed M A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir, 2001, 17: 6368-6374.
-
(2001)
Langmuir
, vol.17
, pp. 6368-6374
-
-
Nikoobakht, B.1
El-Sayed, M.A.2
-
19
-
-
0035954961
-
Tailoring the polyelectrolyte coating of metal nanoparticles
-
Gittins D I, Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem B, 2001, 105: 6846-6852.
-
(2001)
J Phys Chem B
, vol.105
, pp. 6846-6852
-
-
Gittins, D.I.1
Caruso, F.2
-
20
-
-
36949024455
-
Biorecognition-driven self-assembly of gold nanorods: A rapid and sensitive approach toward antibody sensing
-
Wang C G, Chen Y, Wang T T, et al. Biorecognition-driven self-assembly of gold nanorods: A rapid and sensitive approach toward antibody sensing. Chem Mater, 2007, 19: 5809-5811.
-
(2007)
Chem Mater
, vol.19
, pp. 5809-5811
-
-
Wang, C.G.1
Chen, Y.2
Wang, T.T.3
-
21
-
-
0029006254
-
The interaction of the retina cell surface N-acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherin-mediated adhesion
-
Balsamo J, Ernst H, Zanin M K, et al. The interaction of the retina cell surface N-acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherin-mediated adhesion. J Cell Biol, 1995, 129: 1391-1401.
-
(1995)
J Cell Biol
, vol.129
, pp. 1391-1401
-
-
Balsamo, J.1
Ernst, H.2
Zanin, M.K.3
-
22
-
-
0034131169
-
Tetraspanins are localized at motility-related structures and involved in normal human keratinocyte wound healing migration
-
Peñas P F, García-Díez A, Sánchez-Madrid F, et al. Tetraspanins are localized at motility-related structures and involved in normal human keratinocyte wound healing migration. J Invest Derm, 2000, 114: 1126-1135.
-
(2000)
J Invest Derm
, vol.114
, pp. 1126-1135
-
-
Peñas, P.F.1
García-Díez, A.2
Sánchez-Madrid, F.3
-
24
-
-
0037077718
-
E-selectin and ICAM-1 are incorporated into detergent-insoluble membrane domains following clustering in endothelial cells
-
Tilghman R W, Hoover R L. E-selectin and ICAM-1 are incorporated into detergent-insoluble membrane domains following clustering in endothelial cells. FEBS Lett, 2002, 525: 83-87.
-
(2002)
FEBS Lett
, vol.525
, pp. 83-87
-
-
Tilghman, R.W.1
Hoover, R.L.2
-
25
-
-
0037166942
-
Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes
-
Barreiro O, Yáñez-Mó M, Serrador J M, et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol, 2002, 157: 1233-1245.
-
(2002)
J Cell Biol
, vol.157
, pp. 1233-1245
-
-
Barreiro, O.1
Yáñez-Mó, M.2
Serrador, J.M.3
-
26
-
-
15944361837
-
Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation
-
Barreiro O, Yáñez-Mó M, Sala-Valdés M, et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood, 2005, 105: 2852-2861.
-
(2005)
Blood
, vol.105
, pp. 2852-2861
-
-
Barreiro, O.1
Yáñez-Mó, M.2
Sala-Valdés, M.3
-
27
-
-
34748905448
-
RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration
-
Buul J D, Allingham M J, Samson T, et al. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol, 2007, 178: 1279-1293.
-
(2007)
J Cell Biol
, vol.178
, pp. 1279-1293
-
-
Buul, J.D.1
Allingham, M.J.2
Samson, T.3
-
28
-
-
0030062129
-
Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins)
-
Berditchevski F, Zutter M M, Hemler M E. Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol Biol Cell, 1996, 7: 193-207.
-
(1996)
Mol Biol Cell
, vol.7
, pp. 193-207
-
-
Berditchevski, F.1
Zutter, M.M.2
Hemler, M.E.3
-
29
-
-
0028999004
-
Membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin α3β1 at cell-cell contact sites
-
Nakamura K, Iwamoto R, Mekada E. Membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin α3β1 at cell-cell contact sites. J Cell Biol, 1995, 129: 1691-1705.
-
(1995)
J Cell Biol
, vol.129
, pp. 1691-1705
-
-
Nakamura, K.1
Iwamoto, R.2
Mekada, E.3
-
30
-
-
0032189153
-
Integrins take partners: Cross-talk between integrins and other membrane receptors
-
Porter J C, Hogg N. Integrins take partners: Cross-talk between integrins and other membrane receptors. Trends Cell Biol, 1998, 8: 390-396.
-
(1998)
Trends Cell Biol
, vol.8
, pp. 390-396
-
-
Porter, J.C.1
Hogg, N.2
-
31
-
-
0033952054
-
CD9 Participates in endothelial cell migration during in vitro wound repair
-
Klein-Soyer C, Azorsa D O, Cazenave J P, et al. CD9 Participates in endothelial cell migration during in vitro wound repair. Annu Rev Cell Dev Biol, 2000, 20: 360-369.
-
(2000)
Annu Rev Cell Dev Biol
, vol.20
, pp. 360-369
-
-
Klein-Soyer, C.1
Azorsa, D.O.2
Cazenave, J.P.3
-
32
-
-
0032948124
-
PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function
-
Sincock P M, Fitter S, Parton R G, et al. PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci, 1999, 112: 833-844.
-
(1999)
J Cell Sci
, vol.112
, pp. 833-844
-
-
Sincock, P.M.1
Fitter, S.2
Parton, R.G.3
-
33
-
-
0038610891
-
Tetraspanin CD151 regulates α6β1 integrin adhesion strengthening
-
Lammerding J, Kazarov A R, Huang H, et al. Tetraspanin CD151 regulates α6β1 integrin adhesion strengthening. Proc Natl Acad Sci USA, 2003, 100: 7616-7621.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 7616-7621
-
-
Lammerding, J.1
Kazarov, A.R.2
Huang, H.3
|