메뉴 건너뛰기




Volumn 31, Issue 3, 2013, Pages 264-277

A cross-language personalized recommendation model in digital libraries

Author keywords

Cross language; Digital libraries; Internet; Languages; Personalized services; Programming and algorithm theory; Recommendation system; User studies; Web mining

Indexed keywords


EID: 84880464078     PISSN: 02640473     EISSN: None     Source Type: Journal    
DOI: 10.1108/EL-08-2011-0126     Document Type: Article
Times cited : (16)

References (24)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
    • Adomavicius, G. and Tuzhilin, A. (2005), “Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions”, IEEE Transactions on Knowledge and Data Engineering, Vol. 17 No. 6, pp. 734-749.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 0031103679 scopus 로고    scopus 로고
    • Fab: content-based, collaborative recommendation
    • Balabanovic, M. and Shoham, Y. (1997), “Fab: content-based, collaborative recommendation”, Communications of the ACM, Vol. 40 No. 3, pp. 66-72.
    • (1997) Communications of the ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 6
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • Goldberg, D., Nichols, D., Oki, B.M. and Terry, D. (1992), “Using collaborative filtering to weave an information tapestry”, Communications of the ACM, Vol. 35 No. 12, pp. 61-70.
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 12
    • 0031168547 scopus 로고    scopus 로고
    • Learning and revising user profiles: the identification of interesting web sites
    • Pazzani, M. and Billsus, D. (1997), “Learning and revising user profiles: the identification of interesting web sites”, Machine Learning, Vol. 27 No. 3, pp. 313-331.
    • (1997) Machine Learning , vol.27 , Issue.3 , pp. 313-331
    • Pazzani, M.1    Billsus, D.2
  • 13
    • 0033325071 scopus 로고    scopus 로고
    • A framework for collaborative, content-based and demographic filtering
    • Pazzani, M.J. (1999), “A framework for collaborative, content-based and demographic filtering”, Artificial Intelligence Review, Vol. 13 No. 5, pp. 393-408.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.5 , pp. 393-408
    • Pazzani, M.J.1
  • 17
    • 0000953205 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • Salton, G. and Buckley, C. (1988), “Term-weighting approaches in automatic text retrieval”, Information Processing and Management, Vol. 25 No. 5, pp. 322-328.
    • (1988) Information Processing and Management , vol.25 , Issue.5 , pp. 322-328
    • Salton, G.1    Buckley, C.2
  • 21
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • Takács, G., Pilászy, I., Németh, B. and Tikk, D. (2009), “Scalable collaborative filtering approaches for large recommender systems”, Journal of Machine Learning Research, Vol. 10, pp. 623-656.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 623-656
    • Takács, G.1    Pilászy, I.2    Németh, B.3    Tikk, D.4
  • 23
    • 39649112098 scopus 로고    scopus 로고
    • An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model
    • Yoshii, K., Goto, M., Komatani, K., Ogata, T. and Okuno, H.G. (2008), “An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model”, IEEE Transactions on Audio, Speech, and Language Processing, Vol. 16 No. 2, pp. 435-447.
    • (2008) IEEE Transactions on Audio, Speech, and Language Processing , vol.16 , Issue.2 , pp. 435-447
    • Yoshii, K.1    Goto, M.2    Komatani, K.3    Ogata, T.4    Okuno, H.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.