-
2
-
-
0031092111
-
Should we use neural networks or statistical models for short term motorway traffic forecasting
-
H. Kirby, M. Dougherty, and S. Watson, "Should we use neural networks or statistical models for short term motorway traffic forecasting," International Journal of Forecasting, vol. 13, pp. 43-50 1997
-
(1997)
International Journal of Forecasting
, vol.13
, pp. 43-50
-
-
Kirby, H.1
Dougherty, M.2
Watson, S.3
-
3
-
-
0010373099
-
Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process
-
Doctoral Dissertation, Department of Civil Engineering, University of Virginia, Charlottesville
-
Williams, B. M., "Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process", Doctoral Dissertation, Department of Civil Engineering, University of Virginia, Charlottesville, 1999.
-
(1999)
-
-
Williams, B.M.1
-
4
-
-
0021375695
-
Dynamic prediction of traffic volume through Kalman filtering theory
-
I. Okutani and Y. J. Stephanedes, "Dynamic prediction of traffic volume through Kalman filtering theory", Transportation Research Part B, 18B, pp. 1-11, 1984
-
(1984)
Transportation Research Part B
, vol.18 B
, pp. 1-11
-
-
Okutani, I.1
Stephanedes, Y.J.2
-
5
-
-
0026128928
-
Nonparametric Regression and Short-Term Freeway Traffic Forecasting
-
G. A. Davis and N. L. Nihan, "Nonparametric Regression and Short-Term Freeway Traffic Forecasting." Journal of Transportation Engineering, pp. 178-188, 1991.
-
(1991)
Journal of Transportation Engineering
, pp. 178-188
-
-
Davis, G.A.1
Nihan, N.L.2
-
6
-
-
47249092718
-
-
B. L. Smith Forecasting Freeway Traffic Flow for Intelligent Transportation Systems Application., Diss. University of Virginia, 1995.
-
B. L. Smith "Forecasting Freeway Traffic Flow for Intelligent Transportation Systems Application.", Diss. University of Virginia, 1995.
-
-
-
-
7
-
-
0001891123
-
Short-Term Traffic Flow Prediction: Neural Network Approach
-
B. Smith and M. Demetsky, "Short-Term Traffic Flow Prediction: Neural Network Approach", Transportation Research Record, 1453, pp. 98-104, 1994.
-
(1994)
Transportation Research Record
, vol.1453
, pp. 98-104
-
-
Smith, B.1
Demetsky, M.2
-
8
-
-
10644246555
-
A radial basis function neural network approach to traffic flow forecasting
-
IEEE
-
X.-H. Wang and J-M. Xiao, "A radial basis function neural network approach to traffic flow forecasting", Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE, vol. 1, pp. 614-617, 2003.
-
(2003)
Intelligent Transportation Systems, 2003. Proceedings
, vol.1
, pp. 614-617
-
-
Wang, X.-H.1
Xiao, J.-M.2
-
9
-
-
0003023581
-
Short-term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network
-
TRB, National Research Council, Washington, D.C, pp
-
B. Park, C. J. Messer, and T. Urbanik II. "Short-term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network." Transportation Research Record 1651, TRB, National Research Council, Washington, D.C., pp. 39-47, 1998
-
(1998)
Transportation Research Record 1651
, pp. 39-47
-
-
Park, B.1
Messer, C.J.2
Urbanik II, T.3
-
10
-
-
33645025589
-
Multi-recurrent networks for traffic forecasting
-
Technical Report, Austrian Research Institute for Artificial Intelligence, Vienna, Austria
-
C. Ulbricht, "Multi-recurrent networks for traffic forecasting", Technical Report, Austrian Research Institute for Artificial Intelligence, Vienna, Austria, 1993.
-
(1993)
-
-
Ulbricht, C.1
-
11
-
-
84949269959
-
Short Term Freeway Flow Prediction Using Genetically-Optimized Time-Delay Based Neural Networks
-
University of California at Berkeley
-
B. Abdulhai, H. Porwal, and W. Recher, "Short Term Freeway Flow Prediction Using Genetically-Optimized Time-Delay Based Neural Networks", PATH Final Report, University of California at Berkeley, 1998.
-
(1998)
PATH Final Report
-
-
Abdulhai, B.1
Porwal, H.2
Recher, W.3
-
12
-
-
0035480351
-
Use of sequential learning for short-term traffic flow forecasting
-
H. Chen and S. Grant-Muller, "Use of sequential learning for short-term traffic flow forecasting", Transportation Research Part C, No. 9, pp. 319-336, 2001.
-
(2001)
Transportation Research Part C
, Issue.9
, pp. 319-336
-
-
Chen, H.1
Grant-Muller, S.2
-
13
-
-
0035372068
-
An object-oriented neural network approach to short-term traffic forecasting
-
H. Dia, "An object-oriented neural network approach to short-term traffic forecasting", European Journal of Operational Research, 13 1, pp. 253-261, 2001.
-
(2001)
European Journal of Operational Research
, vol.13
, Issue.1
, pp. 253-261
-
-
Dia, H.1
-
14
-
-
33744972790
-
Travel Time Prediction with Support Vector Regression
-
October
-
C.-H. Wu, C.-C. Wei, D.-C. Su, M.-H. Chang, and J.-M. Ho, "Travel Time Prediction with Support Vector Regression," Proceedings of IEEE Intelligent Transportation Systems Conference, pp. 1438-1442, October 2003.
-
(2003)
Proceedings of IEEE Intelligent Transportation Systems Conference
, pp. 1438-1442
-
-
Wu, C.-H.1
Wei, C.-C.2
Su, D.-C.3
Chang, M.-H.4
Ho, J.-M.5
-
16
-
-
0004161838
-
-
in C. Cambridge University Press, Cambridge
-
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge University Press, Cambridge, 1992.
-
(1992)
Numerical Recipes
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
17
-
-
47249120336
-
A (partial) documentation of RBF & Adaboost reg software package
-
available online
-
G. Ratsch, "A (partial) documentation of RBF & Adaboost reg software package" User document available online: http://www.boosting.org/papers/RBF_ABR Doc.ps.gz
-
User document
-
-
Ratsch, G.1
-
18
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Machine Learning, 24(2), pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
19
-
-
84880692052
-
-
R. E. Schapire, A brief introduction to boosting, In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.
-
R. E. Schapire, "A brief introduction to boosting", In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.
-
-
-
|