메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Ensemble learning approach for freeway short-term traffic flow prediction

Author keywords

[No Author keywords available]

Indexed keywords

ARSENIC COMPOUNDS; CONTROL THEORY; EDUCATION; FEEDFORWARD NEURAL NETWORKS; FEES AND CHARGES; FINANCE; FORECASTING; HIGHWAY SYSTEMS; INDUSTRIAL ENGINEERING; INTELLIGENT SYSTEMS; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; MILITARY DATA PROCESSING; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; REAL TIME SYSTEMS; SYSTEMS ENGINEERING; TRAFFIC SURVEYS; TRANSPORTATION; TRANSPORTATION CHARGES; VEHICLE LOCATING SYSTEMS;

EID: 47249085676     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SYSOSE.2007.4304282     Document Type: Conference Paper
Times cited : (26)

References (19)
  • 1
    • 0002324802 scopus 로고
    • Short Term Traffic Forecasting Using Time Series Methods
    • C. K. Moorthy and B. G. Ratcliffe, "Short Term Traffic Forecasting Using Time Series Methods." Transportation Planning Technology, vol. 12, pp. 45-56, 1988.
    • (1988) Transportation Planning Technology , vol.12 , pp. 45-56
    • Moorthy, C.K.1    Ratcliffe, B.G.2
  • 2
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural networks or statistical models for short term motorway traffic forecasting
    • H. Kirby, M. Dougherty, and S. Watson, "Should we use neural networks or statistical models for short term motorway traffic forecasting," International Journal of Forecasting, vol. 13, pp. 43-50 1997
    • (1997) International Journal of Forecasting , vol.13 , pp. 43-50
    • Kirby, H.1    Dougherty, M.2    Watson, S.3
  • 3
    • 0010373099 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process
    • Doctoral Dissertation, Department of Civil Engineering, University of Virginia, Charlottesville
    • Williams, B. M., "Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process", Doctoral Dissertation, Department of Civil Engineering, University of Virginia, Charlottesville, 1999.
    • (1999)
    • Williams, B.M.1
  • 4
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • I. Okutani and Y. J. Stephanedes, "Dynamic prediction of traffic volume through Kalman filtering theory", Transportation Research Part B, 18B, pp. 1-11, 1984
    • (1984) Transportation Research Part B , vol.18 B , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 5
    • 0026128928 scopus 로고
    • Nonparametric Regression and Short-Term Freeway Traffic Forecasting
    • G. A. Davis and N. L. Nihan, "Nonparametric Regression and Short-Term Freeway Traffic Forecasting." Journal of Transportation Engineering, pp. 178-188, 1991.
    • (1991) Journal of Transportation Engineering , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 6
    • 47249092718 scopus 로고    scopus 로고
    • B. L. Smith Forecasting Freeway Traffic Flow for Intelligent Transportation Systems Application., Diss. University of Virginia, 1995.
    • B. L. Smith "Forecasting Freeway Traffic Flow for Intelligent Transportation Systems Application.", Diss. University of Virginia, 1995.
  • 7
    • 0001891123 scopus 로고
    • Short-Term Traffic Flow Prediction: Neural Network Approach
    • B. Smith and M. Demetsky, "Short-Term Traffic Flow Prediction: Neural Network Approach", Transportation Research Record, 1453, pp. 98-104, 1994.
    • (1994) Transportation Research Record , vol.1453 , pp. 98-104
    • Smith, B.1    Demetsky, M.2
  • 8
    • 10644246555 scopus 로고    scopus 로고
    • A radial basis function neural network approach to traffic flow forecasting
    • IEEE
    • X.-H. Wang and J-M. Xiao, "A radial basis function neural network approach to traffic flow forecasting", Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE, vol. 1, pp. 614-617, 2003.
    • (2003) Intelligent Transportation Systems, 2003. Proceedings , vol.1 , pp. 614-617
    • Wang, X.-H.1    Xiao, J.-M.2
  • 9
    • 0003023581 scopus 로고    scopus 로고
    • Short-term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network
    • TRB, National Research Council, Washington, D.C, pp
    • B. Park, C. J. Messer, and T. Urbanik II. "Short-term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network." Transportation Research Record 1651, TRB, National Research Council, Washington, D.C., pp. 39-47, 1998
    • (1998) Transportation Research Record 1651 , pp. 39-47
    • Park, B.1    Messer, C.J.2    Urbanik II, T.3
  • 10
    • 33645025589 scopus 로고
    • Multi-recurrent networks for traffic forecasting
    • Technical Report, Austrian Research Institute for Artificial Intelligence, Vienna, Austria
    • C. Ulbricht, "Multi-recurrent networks for traffic forecasting", Technical Report, Austrian Research Institute for Artificial Intelligence, Vienna, Austria, 1993.
    • (1993)
    • Ulbricht, C.1
  • 11
    • 84949269959 scopus 로고    scopus 로고
    • Short Term Freeway Flow Prediction Using Genetically-Optimized Time-Delay Based Neural Networks
    • University of California at Berkeley
    • B. Abdulhai, H. Porwal, and W. Recher, "Short Term Freeway Flow Prediction Using Genetically-Optimized Time-Delay Based Neural Networks", PATH Final Report, University of California at Berkeley, 1998.
    • (1998) PATH Final Report
    • Abdulhai, B.1    Porwal, H.2    Recher, W.3
  • 12
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • H. Chen and S. Grant-Muller, "Use of sequential learning for short-term traffic flow forecasting", Transportation Research Part C, No. 9, pp. 319-336, 2001.
    • (2001) Transportation Research Part C , Issue.9 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 13
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • H. Dia, "An object-oriented neural network approach to short-term traffic forecasting", European Journal of Operational Research, 13 1, pp. 253-261, 2001.
    • (2001) European Journal of Operational Research , vol.13 , Issue.1 , pp. 253-261
    • Dia, H.1
  • 17
    • 47249120336 scopus 로고    scopus 로고
    • A (partial) documentation of RBF & Adaboost reg software package
    • available online
    • G. Ratsch, "A (partial) documentation of RBF & Adaboost reg software package" User document available online: http://www.boosting.org/papers/RBF_ABR Doc.ps.gz
    • User document
    • Ratsch, G.1
  • 18
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, 24(2), pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 19
    • 84880692052 scopus 로고    scopus 로고
    • R. E. Schapire, A brief introduction to boosting, In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.
    • R. E. Schapire, "A brief introduction to boosting", In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.