메뉴 건너뛰기




Volumn 8, Issue 7, 2013, Pages 517-521

Silicon chips detect intracellular pressure changes in living cells

Author keywords

[No Author keywords available]

Indexed keywords

HYDRAULICS; HYDROSTATIC PRESSURE; SILICON;

EID: 84880229232     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2013.118     Document Type: Article
Times cited : (67)

References (30)
  • 1
    • 78651388574 scopus 로고    scopus 로고
    • Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding
    • Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226-230 (2011).
    • (2011) Nature , vol.469 , pp. 226-230
    • Stewart, M.P.1
  • 2
    • 78651149939 scopus 로고
    • Mechanical properties of red cell membrane. i. Membrane stiffnessintracellular pressure
    • Rand, R. P. & Burton, A. C. Mechanical properties of red cell membrane. i. Membrane stiffnessintracellular pressure. Biophys. J. 4, 115-135 (1964).
    • (1964) Biophys. J. , vol.4 , pp. 115-135
    • Rand, R.P.1    Burton, A.C.2
  • 3
    • 0023834975 scopus 로고
    • Hydrostatic-pressure in epidermal-cells is dependent on Ca-mediated contractions
    • Strohmeier, R. & Bereiterhahn, J. Hydrostatic-pressure in epidermal-cells is dependent on Ca-mediated contractions. J. Cell Sci. 88, 631-640 (1987).
    • (1987) J. Cell Sci. , vol.88 , pp. 631-640
    • Strohmeier, R.1    Bereiterhahn, J.2
  • 4
    • 0025752545 scopus 로고
    • Direct measurement of intracellular pressure
    • Kelly, S. M. & Macklem, P. T. Direct measurement of intracellular pressure. Am. J. Physiol. 260, C652-C657 (1991).
    • (1991) Am. J. Physiol. , vol.260
    • Kelly, S.M.1    Macklem, P.T.2
  • 5
    • 0141765891 scopus 로고    scopus 로고
    • The 'right' size in nanobiotechnology
    • Whitesides, G. M. The 'right' size in nanobiotechnology. Nature Biotechnol. 21, 1161-1165 (2003).
    • (2003) Nature Biotechnol. , vol.21 , pp. 1161-1165
    • Whitesides, G.M.1
  • 6
    • 78650619069 scopus 로고    scopus 로고
    • Multifunctional carbon-nanotube cellular endoscopes
    • Singhal, R. et al. Multifunctional carbon-nanotube cellular endoscopes. Nature Nanotech. 6, 57-63 (2011).
    • (2011) Nature Nanotech. , vol.6 , pp. 57-63
    • Singhal, R.1
  • 7
    • 77955600944 scopus 로고    scopus 로고
    • Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes
    • Tian, B. Z. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830-834 (2010).
    • (2010) Science , vol.329 , pp. 830-834
    • Tian, B.Z.1
  • 8
    • 79955821190 scopus 로고    scopus 로고
    • Comparative advantages of mechanical biosensors
    • Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203-215 (2011).
    • (2011) Nature Nanotech. , vol.6 , pp. 203-215
    • Arlett, J.L.1    Myers, E.B.2    Roukes, M.L.3
  • 9
    • 36849037967 scopus 로고    scopus 로고
    • Nanomechanical analysis of cells from cancer patients
    • Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780-783 (2007).
    • (2007) Nature Nanotech. , vol.2 , pp. 780-783
    • Cross, S.E.1    Jin, Y.S.2    Rao, J.3    Gimzewski, J.K.4
  • 10
    • 0035002155 scopus 로고    scopus 로고
    • Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates
    • Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466-472 (2001).
    • (2001) Nature Cell Biol. , vol.3 , pp. 466-472
    • Balaban, N.Q.1
  • 11
    • 37649002771 scopus 로고    scopus 로고
    • Cell and biomolecular mechanics in silico
    • Vaziri, A. & Gopinath, A. Cell and biomolecular mechanics in silico. Nature Mater. 7, 15-23 (2008).
    • (2008) Nature Mater. , vol.7 , pp. 15-23
    • Vaziri, A.1    Gopinath, A.2
  • 12
    • 77957203005 scopus 로고    scopus 로고
    • Group IV nanoparticles: Synthesis, properties, and biological applications
    • Fan, J. Y. & Chu, P. K. Group IV nanoparticles: synthesis, properties, and biological applications. Small 6, 2080-2098 (2010).
    • (2010) Small , vol.6 , pp. 2080-2098
    • Fan, J.Y.1    Chu, P.K.2
  • 13
    • 40449122225 scopus 로고    scopus 로고
    • Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications
    • Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotech. 3, 151-157 (2008).
    • (2008) Nature Nanotech. , vol.3 , pp. 151-157
    • Tasciotti, E.1
  • 14
    • 70449379699 scopus 로고    scopus 로고
    • Intracellular polysilicon barcodes for cell tracking
    • Fernandez-Rosas, E. et al. Intracellular polysilicon barcodes for cell tracking. Small 5, 2433-2439 (2009).
    • (2009) Small , vol.5 , pp. 2433-2439
    • Fernandez-Rosas, E.1
  • 15
    • 78650686605 scopus 로고    scopus 로고
    • A novel embryo identification system by direct tagging of mouse embryos using silicon-based barcodes
    • Novo, S. et al. A novel embryo identification system by direct tagging of mouse embryos using silicon-based barcodes. Human Reprod. 26, 96-105 (2011).
    • (2011) Human Reprod. , vol.26 , pp. 96-105
    • Novo, S.1
  • 16
    • 77649086060 scopus 로고    scopus 로고
    • Intracellular silicon chips in living cells
    • Gomez-Martinez, R. et al. Intracellular silicon chips in living cells. Small 6, 499-502 (2010).
    • (2010) Small , vol.6 , pp. 499-502
    • Gomez-Martinez, R.1
  • 18
    • 0037197302 scopus 로고    scopus 로고
    • Polysilicon: A versatile material for microsystems
    • French, P. J. Polysilicon: a versatile material for microsystems. Sens. Actuat. A 99, 3-12 (2002).
    • (2002) Sens. Actuat. A , vol.99 , pp. 3-12
    • French, P.J.1
  • 19
    • 35948975108 scopus 로고    scopus 로고
    • Hydrostatic pressure sensation in cells: Integration into the tensegrity model
    • Myers, K. A., Rattner, J. B., Shrive, N. G. & Hart, D. A. Hydrostatic pressure sensation in cells: integration into the tensegrity model. Biochem. Cell Biol. 85, 543-551 (2007).
    • (2007) Biochem. Cell Biol. , vol.85 , pp. 543-551
    • Myers, K.A.1    Rattner, J.B.2    Shrive, N.G.3    Hart, D.A.4
  • 20
    • 0037383404 scopus 로고    scopus 로고
    • Cell structure and hierarchical systems biology
    • Ingber, D. E. & Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157-1173 (2003).
    • (2003) J. Cell Sci. , vol.116 , pp. 1157-1173
    • Ingber, D.E.1    Tensegrity, I.2
  • 21
    • 0032853219 scopus 로고    scopus 로고
    • Cellular and molecular biology of the aquaporin water channels
    • Borgnia, M., Nielsen, S., Engle, A. & Agre, P. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68, 425-458 (1999).
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 425-458
    • Borgnia, M.1    Nielsen, S.2    Engle, A.3    Agre, P.4
  • 22
    • 54749149081 scopus 로고    scopus 로고
    • Atomic force microscopy analysis of cell volume regulation
    • Spagnoli, C., Beyder, A., Besch, S. & Sachs, F. Atomic force microscopy analysis of cell volume regulation. Phys. Rev. E 78, 031916 (2008).
    • (2008) Phys. Rev. e , vol.78 , pp. 031916
    • Spagnoli, C.1    Beyder, A.2    Besch, S.3    Sachs, F.4
  • 23
    • 74949142827 scopus 로고    scopus 로고
    • The effects of osmotic stress on the structure and function of the cell nucleus
    • Finan, J. D. & Guilak, F. The effects of osmotic stress on the structure and function of the cell nucleus. J. Cell Biochem. 109, 460-467 (2010).
    • (2010) J. Cell Biochem. , vol.109 , pp. 460-467
    • Finan, J.D.1    Guilak, F.2
  • 24
    • 84872198744 scopus 로고    scopus 로고
    • Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress
    • Pietuch, A, Brückner, B. R. & Janshoff, A. Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress. Biochim. Biophys. Acta Mol. Cell Res. 1833, 712-722 (2013).
    • (2013) Biochim. Biophys. Acta Mol. Cell Res. , vol.1833 , pp. 712-722
    • Pietuch, A.1    Brückner, B.R.2    Janshoff, A.3
  • 25
    • 79957451087 scopus 로고    scopus 로고
    • Collective cell guidance by cooperative intercellular forces
    • Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469-475 (2011).
    • (2011) Nature Mater. , vol.10 , pp. 469-475
    • Tambe, D.T.1
  • 26
    • 67650227472 scopus 로고    scopus 로고
    • Physical forces during collective cell migration
    • Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426-430 (2009).
    • (2009) Nature Phys. , vol.5 , pp. 426-430
    • Trepat, X.1
  • 27
    • 79955441991 scopus 로고    scopus 로고
    • Balancing forces: Architectural control of mechanotransduction
    • DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nature Rev. Mol. Cell Biol. 12, 308-318 (2011).
    • (2011) Nature Rev. Mol. Cell Biol. , vol.12 , pp. 308-318
    • Dufort, C.C.1    Paszek, M.J.2    Weaver, V.M.3
  • 29
    • 77957552139 scopus 로고    scopus 로고
    • Are biomechanical changes necessary for tumour progression?
    • Fritsch, A. et al. Are biomechanical changes necessary for tumour progression? Nature Phys. 6, 730-732 (2010).
    • (2010) Nature Phys. , vol.6 , pp. 730-732
    • Fritsch, A.1
  • 30
    • 58049220350 scopus 로고    scopus 로고
    • Mechanotransduction in development: A growing role for contractility
    • Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nature Rev. Mol. Cell Biol. 10, 34-43 (2009).
    • (2009) Nature Rev. Mol. Cell Biol. , vol.10 , pp. 34-43
    • Wozniak, M.A.1    Chen, C.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.