메뉴 건너뛰기




Volumn 31, Issue 9, 2013, Pages 616-630

Improved background modeling for real-time spatio-temporal non-parametric moving object detection strategies

Author keywords

Dynamic bandwidth estimation; Moving object detection; Non parametric background modeling; Selective update; Spatio temporal data

Indexed keywords

BANDWIDTH; COMPUTER VISION; OBJECT RECOGNITION;

EID: 84880177534     PISSN: 02628856     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.imavis.2013.06.003     Document Type: Article
Times cited : (43)

References (47)
  • 1
    • 77958510391 scopus 로고    scopus 로고
    • 2010 gadget census [Consumer Tech Census]
    • K. Sangani 2010 gadget census [Consumer Tech Census] Eng. Technol. 5 2010 28 29
    • (2010) Eng. Technol. , vol.5 , pp. 28-29
    • Sangani, K.1
  • 2
    • 77949772158 scopus 로고    scopus 로고
    • Real-time detection and tracking for augmented reality on mobile phones
    • A. Mulloni, and T. Drummond Real-time detection and tracking for augmented reality on mobile phones IEEE Trans. Vis. Comput. Graph. 16 2010 355 368
    • (2010) IEEE Trans. Vis. Comput. Graph. , vol.16 , pp. 355-368
    • Mulloni, A.1    Drummond, T.2
  • 3
    • 84868592624 scopus 로고    scopus 로고
    • Robust detection of moving objects in video sequences through rough set theory framework
    • P. Chiranjeevi, and S. Sengupta Robust detection of moving objects in video sequences through rough set theory framework Image Vis. Comput. 30 2012 829 842
    • (2012) Image Vis. Comput. , vol.30 , pp. 829-842
    • Chiranjeevi, P.1    Sengupta, S.2
  • 4
  • 5
    • 78649728374 scopus 로고    scopus 로고
    • Fast image motion segmentation for surveillance applications
    • X. Lu, and R. Manduchi Fast image motion segmentation for surveillance applications Image Vis. Comput. 29 2011 104 116
    • (2011) Image Vis. Comput. , vol.29 , pp. 104-116
    • Lu, X.1    Manduchi, R.2
  • 7
    • 69949105468 scopus 로고    scopus 로고
    • Non-parametric statistical background modeling for efficient foreground region detection
    • A. Tavakkoli, M. Nicolescu, G. Bebis, and M. Nicolescu Non-parametric statistical background modeling for efficient foreground region detection Mach. Vis. Appl. 20 2009 395 409
    • (2009) Mach. Vis. Appl. , vol.20 , pp. 395-409
    • Tavakkoli, A.1    Nicolescu, M.2    Bebis, G.3    Nicolescu, M.4
  • 10
    • 79951818849 scopus 로고    scopus 로고
    • Regularized background adaptation: A novel learning rate control scheme for Gaussian mixture modeling
    • H. Lin, J. Chuang, and T. Liu Regularized background adaptation: a novel learning rate control scheme for Gaussian mixture modeling IEEE Trans. Image Process. 20 2011 822 836
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 822-836
    • Lin, H.1    Chuang, J.2    Liu, T.3
  • 11
    • 33644785860 scopus 로고    scopus 로고
    • Unsupervised scene analysis: A hidden Markov model approach
    • DOI 10.1016/j.cviu.2005.09.001, PII S1077314205001323
    • M. Bicego, M. Cristani, and V. Murino Unsupervised scene analysis: a hidden Markov model approach Comput. Vis. Image Underst. 102 2006 22 41 (Pubitemid 43344448)
    • (2006) Computer Vision and Image Understanding , vol.102 , Issue.1 , pp. 22-41
    • Bicego, M.1    Cristani, M.2    Murino, V.3
  • 12
    • 79952530187 scopus 로고    scopus 로고
    • Modeling complex scenes for accurate moving objects segmentation
    • J. Ding, M. Li, K. Huang, and T. Tan Modeling complex scenes for accurate moving objects segmentation Lect. Notes Comput. Sci. 6493 2011 82 94
    • (2011) Lect. Notes Comput. Sci. , vol.6493 , pp. 82-94
    • Ding, J.1    Li, M.2    Huang, K.3    Tan, T.4
  • 15
    • 78249277921 scopus 로고    scopus 로고
    • Background subtraction for automated multisensor surveillance: A comprehensive review
    • (Article ID 343057)
    • M. Cristani, M. Farenzena, D. Bloisi, and V. Murino Background subtraction for automated multisensor surveillance: a comprehensive review EURASIP J. Adv. Signal Process 2010 2010 1 24 (Article ID 343057)
    • (2010) EURASIP J. Adv. Signal Process , vol.2010 , pp. 1-24
    • Cristani, M.1    Farenzena, M.2    Bloisi, D.3    Murino, V.4
  • 17
    • 46649105522 scopus 로고    scopus 로고
    • Foreground segmentation based on selective foreground model
    • X. Zhang, and J. Yang Foreground segmentation based on selective foreground model Electron. Lett. 44 2008 851 852
    • (2008) Electron. Lett. , vol.44 , pp. 851-852
    • Zhang, X.1    Yang, J.2
  • 18
  • 19
    • 84859046916 scopus 로고    scopus 로고
    • Moving object detection for real-time augmented reality applications in a GPGPU
    • C. Cuevas, D. Berjón, F. Morán, and N. García Moving object detection for real-time augmented reality applications in a GPGPU IEEE Trans. Consum. Electron. 58 2012 117 125
    • (2012) IEEE Trans. Consum. Electron. , vol.58 , pp. 117-125
    • Cuevas, C.1    Berjón, D.2    Morán, F.3    García, N.4
  • 20
    • 70350109048 scopus 로고    scopus 로고
    • Kernel bandwidth estimation for nonparametric modeling
    • A. Bors, and N. Nasios Kernel bandwidth estimation for nonparametric modeling IEEE Trans. Syst. Man Cybern. B Cybern. 39 2009 1543 1555
    • (2009) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.39 , pp. 1543-1555
    • Bors, A.1    Nasios, N.2
  • 21
    • 80455160065 scopus 로고    scopus 로고
    • Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions
    • S. Hu, D. Poskitt, and X. Zhang Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions Comput. Stat. Data Anal. 56 2012 732 740
    • (2012) Comput. Stat. Data Anal. , vol.56 , pp. 732-740
    • Hu, S.1    Poskitt, D.2    Zhang, X.3
  • 23
    • 77950485823 scopus 로고    scopus 로고
    • Unsupervised approach for building non-parametric background and foreground models of scenes with significant foreground activity
    • N. Martel-Brisson, and A. Zaccarin Unsupervised approach for building non-parametric background and foreground models of scenes with significant foreground activity ACM Workshop on Vision Networks for Behavior Analysis 2008 93 100
    • (2008) ACM Workshop on Vision Networks for Behavior Analysis , pp. 93-100
    • Martel-Brisson, N.1    Zaccarin, A.2
  • 24
    • 33645307063 scopus 로고    scopus 로고
    • Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    • A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis Background and foreground modeling using nonparametric kernel density estimation for visual surveillance Proc. IEEE 90 2002 1151 1163
    • (2002) Proc. IEEE , vol.90 , pp. 1151-1163
    • Elgammal, A.1    Duraiswami, R.2    Harwood, D.3    Davis, L.4
  • 25
    • 78650458202 scopus 로고    scopus 로고
    • Towards robust object detection: Integrated background modeling based on spatio-temporal features
    • T. Tanaka, A. Shimada, R. Taniguchi, T. Yamashita, and D. Arita Towards robust object detection: integrated background modeling based on spatio-temporal features Lect. Notes Comput. Sci. 5994 2010 201 212
    • (2010) Lect. Notes Comput. Sci. , vol.5994 , pp. 201-212
    • Tanaka, T.1    Shimada, A.2    Taniguchi, R.3    Yamashita, T.4    Arita, D.5
  • 26
    • 55249110878 scopus 로고    scopus 로고
    • Moving object detection in spatial domain using background removal techniques-state-of-art
    • S. Elhabian, K. El-Sayed, and S. Ahmed Moving object detection in spatial domain using background removal techniques-state-of-art Recent Patents Comput. Sci. 1 2008 32 54
    • (2008) Recent Patents Comput. Sci. , vol.1 , pp. 32-54
    • Elhabian, S.1    El-Sayed, K.2    Ahmed, S.3
  • 28
    • 9644270324 scopus 로고    scopus 로고
    • A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking
    • B. Shoushtarian, and H. Bez A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking Pattern Recognit. Lett. 26 2005 5 26
    • (2005) Pattern Recognit. Lett. , vol.26 , pp. 5-26
    • Shoushtarian, B.1    Bez, H.2
  • 30
    • 84862966407 scopus 로고    scopus 로고
    • A method for background modeling and moving object detection in video surveillance
    • K. Li, and Y. Yang A method for background modeling and moving object detection in video surveillance IEEE Int. Congress on Image and Signal Processing vol. 1 2011 381 385
    • (2011) IEEE Int. Congress on Image and Signal Processing , vol.1 , pp. 381-385
    • Li, K.1    Yang, Y.2
  • 33
    • 36949010593 scopus 로고    scopus 로고
    • Robust abandoned object detection using dual foregrounds
    • (Article ID 197875)
    • F. Porikli, Y. Ivanov, and T. Haga Robust abandoned object detection using dual foregrounds EURASIP J. Adv. Signal Process. 2008 2008 1 11 (Article ID 197875)
    • (2008) EURASIP J. Adv. Signal Process. , vol.2008 , pp. 1-11
    • Porikli, F.1    Ivanov, Y.2    Haga, T.3
  • 35
    • 79961171854 scopus 로고    scopus 로고
    • A temporal-spatial background modeling of dynamic scenes
    • J. Hao, C. Li, Z. Xiong, and E. Hussain A temporal-spatial background modeling of dynamic scenes Front. Comput. Sci. China 5 2011 290 299
    • (2011) Front. Comput. Sci. China , vol.5 , pp. 290-299
    • Hao, J.1    Li, C.2    Xiong, Z.3    Hussain, E.4
  • 37
    • 84872336127 scopus 로고    scopus 로고
    • Efficient moving object detection for lightweight applications on smart cameras
    • C. Cuevas, and N. García Efficient moving object detection for lightweight applications on smart cameras IEEE Trans. Circ. Syst. Video Technol. 23 2013 1 14
    • (2013) IEEE Trans. Circ. Syst. Video Technol. , vol.23 , pp. 1-14
    • Cuevas, C.1    García, N.2
  • 38
    • 33845564157 scopus 로고    scopus 로고
    • Tracking probabilistic correlation of monitoring data for fault detection in complex systems
    • DOI 10.1109/DSN.2006.70, 1633515, Proceedings - DSN 2006: 2006 International Conference on Dependable Systems and Networks
    • Z. Guo, G. Jiang, H. Chen, and K. Yoshihira Tracking probabilistic correlation of monitoring data for fault detection in complex systems IEEE Int. Conf. Dependable Systems and Networks 2006 259 268 (Pubitemid 44930427)
    • (2006) Proceedings of the International Conference on Dependable Systems and Networks , vol.2006 , pp. 259-268
    • Guo, Z.1    Jiang, G.2    Chen, H.3    Yoshihira, K.4
  • 42
    • 84858664433 scopus 로고    scopus 로고
    • Computational Vision Group, University of Reading England ()
    • PETS: Performance Evaluation of Tracking and Surveillance 2000-2009 Computational Vision Group, University of Reading England (http://ftp.pets.rdg. ac.uk/)
    • (2000) PETS: Performance Evaluation of Tracking and Surveillance
  • 44
    • 84880160904 scopus 로고    scopus 로고
    • Lab Database Universidad Politécnica de Madrid Spain ()
    • Lab database Grupo de Tratamiento de Imágenes 2012 Universidad Politécnica de Madrid Spain (http://www.gti.ssr.upm.es/data/)
    • (2012) Grupo de Tratamiento de Imágenes
  • 45
    • 84859846865 scopus 로고    scopus 로고
    • Kernel bandwidth estimation for moving object detection in non-stabilized cameras
    • 040501
    • C. Cuevas, R. Mohedano, and N. García Kernel bandwidth estimation for moving object detection in non-stabilized cameras Opt. Eng. 51 040501 2012 1 3
    • (2012) Opt. Eng. , vol.51 , pp. 1-3
    • Cuevas, C.1    Mohedano, R.2    García, N.3
  • 46
    • 81355154205 scopus 로고    scopus 로고
    • Foreground segmentation based on tracking
    • (Article ID 107203, 5 pages)
    • X. Zhang, J. Yang, and Z. Liu Foreground segmentation based on tracking Opt. Eng. 48 2009 (Article ID 107203, 5 pages)
    • (2009) Opt. Eng. , vol.48
    • Zhang, X.1    Yang, J.2    Liu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.