메뉴 건너뛰기




Volumn 102, Issue 1, 2006, Pages 22-41

Unsupervised scene analysis: A hidden Markov model approach

Author keywords

Hidden Markov models; Scene analysis; Scene understanding; Video processing; Video segmentation; Video surveillance

Indexed keywords

ENTROPY; IMAGE SEGMENTATION; MARKOV PROCESSES; MATHEMATICAL MODELS;

EID: 33644785860     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2005.09.001     Document Type: Article
Times cited : (24)

References (53)
  • 1
    • 0033698724 scopus 로고    scopus 로고
    • Transformed hidden Markov models: Estimating mixture models of images and inferring spatial transformations in video sequences
    • N. Jojic, N. Petrovic, B. Frey, T. Huang, Transformed hidden Markov models: Estimating mixture models of images and inferring spatial transformations in video sequences, in: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2000, pp. 26-33.
    • (2000) Proc. IEEE Conf. on Computer Vision and Pattern Recognition , pp. 26-33
    • Jojic, N.1    Petrovic, N.2    Frey, B.3    Huang, T.4
  • 5
    • 0000362086 scopus 로고    scopus 로고
    • Special issue on video surveillance
    • PAMI, Special issue on video surveillance, IEEE Trans. Pattern Anal. Mach. Intell. 22 (8), 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8
  • 7
    • 0030216085 scopus 로고    scopus 로고
    • Learning the distribution of object trajectories for event recognition
    • N. Johnson, and D. Hogg Learning the distribution of object trajectories for event recognition Image Vision Comput. 14 1996 609 615
    • (1996) Image Vision Comput. , vol.14 , pp. 609-615
    • Johnson, N.1    Hogg, D.2
  • 8
    • 0032804927 scopus 로고    scopus 로고
    • The visual analysis of human movement: A survey
    • D. Gavrila The visual analysis of human movement: a survey Comput. Vision Image Understand. 73 1 1999 82 98
    • (1999) Comput. Vision Image Understand. , vol.73 , Issue.1 , pp. 82-98
    • Gavrila, D.1
  • 10
    • 0001903866 scopus 로고    scopus 로고
    • Action reaction learning: Automatic visual analysis and synthesis of interactive behavior
    • T. Jebara, A. Pentland, Action reaction learning: Automatic visual analysis and synthesis of interactive behavior, in: Proc. Internat. Conf. on Computer Vision Systems, 1999.
    • (1999) Proc. Internat. Conf. on Computer Vision Systems
    • Jebara, T.1    Pentland, A.2
  • 11
    • 0034205098 scopus 로고    scopus 로고
    • Statistical models of object interaction
    • R. Morris, and D. Hogg Statistical models of object interaction Internat. J. Comput. Vision 37 2000 209 215
    • (2000) Internat. J. Comput. Vision , vol.37 , pp. 209-215
    • Morris, R.1    Hogg, D.2
  • 14
    • 0037428183 scopus 로고    scopus 로고
    • Learning and understanding dynamic scene activity: A review
    • H. Buxton Learning and understanding dynamic scene activity: a review Image Vision Comput. 21 2003 125 136
    • (2003) Image Vision Comput. , vol.21 , pp. 125-136
    • Buxton, H.1
  • 15
    • 0037250978 scopus 로고    scopus 로고
    • Transformation-invariant clustering using the em algorithm
    • B. Frey, and N. Jojic Transformation-invariant clustering using the EM algorithm IEEE Trans. Pattern Anal. Mach. Intell. 25 1 2003 1 17
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.1 , pp. 1-17
    • Frey, B.1    Jojic, N.2
  • 17
    • 0034245337 scopus 로고    scopus 로고
    • Multiobject behavior recognition by event driven selective method
    • T. Wada, and T. Matsuyama Multiobject behavior recognition by event driven selective method IEEE Trans. Pattern Anal. Mach. Intell. 22 8 2000 873 887
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 873-887
    • Wada, T.1    Matsuyama, T.2
  • 18
    • 0036784207 scopus 로고    scopus 로고
    • On the semantics of visual behaviour, structured events and trajectories of human action
    • S. Gong, J. Ng, and J. Sherrah On the semantics of visual behaviour, structured events and trajectories of human action Image Vision Comput. 20 12 2002 873 888
    • (2002) Image Vision Comput. , vol.20 , Issue.12 , pp. 873-888
    • Gong, S.1    Ng, J.2    Sherrah, J.3
  • 19
    • 0042496397 scopus 로고    scopus 로고
    • Learning pixel-wise signal energy for understanding semantics
    • BMVA Press
    • J. Ng, and S. Gong Learning pixel-wise signal energy for understanding semantics Proc. of the British Machine Vision Conference 2001 BMVA Press 695 704
    • (2001) Proc. of the British Machine Vision Conference , pp. 695-704
    • Ng, J.1    Gong, S.2
  • 20
    • 0034850447 scopus 로고    scopus 로고
    • Continuous global evidence-based bayesian modality fusion for simultaneous tracking of multiple objects
    • J. Sherrah, S. Gong, Continuous global evidence-based bayesian modality fusion for simultaneous tracking of multiple objects, in: Proc. Internat. Conf. on Computer Vision, 2001, pp. 42-29.
    • (2001) Proc. Internat. Conf. on Computer Vision , pp. 42-29
    • Sherrah, J.1    Gong, S.2
  • 21
    • 0344529706 scopus 로고    scopus 로고
    • Autonomous visual event detection and classification without explicit object-centred segmentation and tracking
    • BMVA Press
    • T. Xiang, S. Gong, and D. Parkinson Autonomous visual event detection and classification without explicit object-centred segmentation and tracking Proc. of the British Machine Vision Conference 2002 BMVA Press 233 242
    • (2002) Proc. of the British Machine Vision Conference , pp. 233-242
    • Xiang, T.1    Gong, S.2    Parkinson, D.3
  • 24
    • 0024610919 scopus 로고
    • A tutorial on Hidden Markov Models and selected applications in speech recognition
    • L. Rabiner A tutorial on Hidden Markov Models and selected applications in speech recognition Proc. IEEE 77 2 1989 257 286
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 25
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. Dempster, N. Laird, and D. Rubin Maximum likelihood from incomplete data via the EM algorithm J. Roy. Statist. Soc. B 39 1977 1 38
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 26
    • 0002210265 scopus 로고
    • On the convergence properties of the em algorithm
    • C. Wu On the convergence properties of the EM algorithm Ann. Stat. 11 1 1983 95 103
    • (1983) Ann. Stat. , vol.11 , Issue.1 , pp. 95-103
    • Wu, C.1
  • 30
    • 8344243818 scopus 로고    scopus 로고
    • Similarity-based clustering of sequences using hidden Markov models
    • P. Perner A. Rosenfeld Springer Berlin
    • M. Bicego, V. Murino, and M. Figueiredo Similarity-based clustering of sequences using hidden Markov models P. Perner A. Rosenfeld Machine Learning and Data Mining in Pattern Recognition vol. LNAI 2734 2003 Springer Berlin 86 95
    • (2003) Machine Learning and Data Mining in Pattern Recognition , vol.2734 , pp. 86-95
    • Bicego, M.1    Murino, V.2    Figueiredo, M.3
  • 31
    • 1542326229 scopus 로고    scopus 로고
    • Rival penalized competitive learning for model-based sequence
    • M. Law, J. Kwok, Rival penalized competitive learning for model-based sequence, in: Proc. Internat. Conf. on Pattern Recognition, vol. 2, 2000, pp. 195-198.
    • (2000) Proc. Internat. Conf. on Pattern Recognition , vol.2 , pp. 195-198
    • Law, M.1    Kwok, J.2
  • 32
    • 84898995769 scopus 로고    scopus 로고
    • Clustering sequences with hidden Markov models
    • M. Mozer M. Jordan T. Petsche MIT Press Cambridge
    • P. Smyth Clustering sequences with hidden Markov models M. Mozer M. Jordan T. Petsche Advances in Neural Information Processing Systems vol. 9 1997 MIT Press Cambridge 648
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 648
    • Smyth, P.1
  • 33
    • 0001012402 scopus 로고    scopus 로고
    • A bayesian approach to temporal data clustering using hidden Markov models
    • C. Li, G. Biswas, A bayesian approach to temporal data clustering using hidden Markov models, in: Proc. Internat. Conf. on Machine Learning, 2000, pp. 543-550.
    • (2000) Proc. Internat. Conf. on Machine Learning , pp. 543-550
    • Li, C.1    Biswas, G.2
  • 34
    • 4644277970 scopus 로고    scopus 로고
    • Applying the Hidden Markov Model methodology for unsupervised learning of temporal data
    • C. Li, and G. Biswas Applying the Hidden Markov Model methodology for unsupervised learning of temporal data Int. J. Knowl.-based Intell. Eng. Syst. 6 3 2002 152 160
    • (2002) Int. J. Knowl.-based Intell. Eng. Syst. , vol.6 , Issue.3 , pp. 152-160
    • Li, C.1    Biswas, G.2
  • 35
    • 84951756001 scopus 로고    scopus 로고
    • A Hidden Markov Model-based approach to sequential data clustering
    • T. Caelli, A. Amin, R. Duin, M. Kamel, D. de Ridder (Eds.), Structural, Syntactic and Statistical Pattern Recognition Springer
    • A. Panuccio, M. Bicego, V. Murino, A Hidden Markov Model-based approach to sequential data clustering, in: T. Caelli, A. Amin, R. Duin, M. Kamel, D. de Ridder (Eds.), Structural, Syntactic and Statistical Pattern Recognition, Lecture Notes in Computer Series, vol. 2396, Springer, 2002, pp. 734-742.
    • (2002) Lecture Notes in Computer Series , vol.2396 , pp. 734-742
    • Panuccio, A.1    Bicego, M.2    Murino, V.3
  • 36
    • 84951784651 scopus 로고    scopus 로고
    • Measuring HMM similarity with the Bayes probability of error and its application to online handwriting recognition
    • C. Bahlmann, H. Burkhardt, Measuring HMM similarity with the Bayes probability of error and its application to online handwriting recognition, in: Proc. Internat. Conf. on Document Analysis and Recognition, 2001, pp. 406-411.
    • (2001) Proc. Internat. Conf. on Document Analysis and Recognition , pp. 406-411
    • Bahlmann, C.1    Burkhardt, H.2
  • 37
    • 0001927585 scopus 로고
    • On information and sufficiency
    • S. Kullback, and R. Leibler On information and sufficiency Ann. Math. Stat. 22 1951 79 86
    • (1951) Ann. Math. Stat. , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 39
    • 0002297358 scopus 로고
    • Hidden Markov Model induction by Bayesian model merging
    • S. Hanson J. Cowan C. Giles Morgan Kaufmann San Mateo, CA
    • A. Stolcke, and S. Omohundro Hidden Markov Model induction by Bayesian model merging S. Hanson J. Cowan C. Giles Advances in Neural Information Processing Systems vol. 5 1993 Morgan Kaufmann San Mateo, CA 11 18
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 11-18
    • Stolcke, A.1    Omohundro, S.2
  • 40
    • 0000148207 scopus 로고    scopus 로고
    • An entropic estimator for structure discovery
    • M. Kearns S. Solla D. Cohn MIT Press Cambridge
    • M. Brand An entropic estimator for structure discovery M. Kearns S. Solla D. Cohn Advances in Neural Information Processing Systems vol. 11 1999 MIT Press Cambridge 723 729
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 723-729
    • Brand, M.1
  • 41
    • 84958677243 scopus 로고    scopus 로고
    • Designing the minimal structure of Hidden Markov Models by bisimulation
    • M. Figueiredo, J. Zerubia, A. Jain (Eds.), Energy Minimization Methods in Computer Vision and Pattern Recognition Springer
    • M. Bicego, A. Dovier, V. Murino, Designing the minimal structure of Hidden Markov Models by bisimulation, in: M. Figueiredo, J. Zerubia, A. Jain (Eds.), Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Series, vol. 2134, Springer, 2001, pp. 75-90.
    • (2001) Lecture Notes in Computer Series , vol.2134 , pp. 75-90
    • Bicego, M.1    Dovier, A.2    Murino, V.3
  • 42
    • 0037410744 scopus 로고    scopus 로고
    • A sequential pruning strategy for the selection of the number of states in Hidden Markov Models
    • M. Bicego, V. Murino, and M. Figueiredo A sequential pruning strategy for the selection of the number of states in Hidden Markov Models Patt. Recogn. Lett. 24 9-10 2003 1395 1407
    • (2003) Patt. Recogn. Lett. , vol.24 , Issue.9-10 , pp. 1395-1407
    • Bicego, M.1    Murino, V.2    Figueiredo, M.3
  • 48
    • 0022018101 scopus 로고
    • A probabilistic distance measure for Hidden Markov Models
    • B. Juang, and L. Rabiner A probabilistic distance measure for Hidden Markov Models AT&T Tech. J. 64 2 1985 391 408
    • (1985) AT&T Tech. J. , vol.64 , Issue.2 , pp. 391-408
    • Juang, B.1    Rabiner, L.2
  • 49
    • 33745736341 scopus 로고    scopus 로고
    • O. Cappé, Ten years of HMMs. Available from: http://www.tsi.enst.fr/cappe/docs/hmmbib.html, 2001.
    • (2001) Ten Years of HMMs
    • Cappé, O.1
  • 51
    • 0344983339 scopus 로고    scopus 로고
    • Recognition of group activities using a dynamic probabilistic network
    • S. Gong, T. Xiang, Recognition of group activities using a dynamic probabilistic network, in: IEEE Proc. Internat. Conf. on Computer Vision, 2003, pp. 742-749.
    • (2003) IEEE Proc. Internat. Conf. on Computer Vision , pp. 742-749
    • Gong, S.1    Xiang, T.2
  • 53
    • 27944488770 scopus 로고    scopus 로고
    • Foreground motion detection by difference-based spatial temporal entropy image
    • G. Jing, C.E. Siong, D. Rajan, Foreground motion detection by difference-based spatial temporal entropy image, in: IEEE Tencon 2004, 2004.
    • (2004) IEEE Tencon 2004
    • Jing, G.1    Siong, C.E.2    Rajan, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.