메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

A wavelet-based robust relevance vector machine based on sensor data scheduling control for modeling mine gas gushing forecasting on virtual environment

Author keywords

[No Author keywords available]

Indexed keywords

KERNEL FUNCTION; MEAN PERCENTAGE; MORLET WAVELET FUNCTION; PREDICTION ACCURACY; PREDICTION ERRORS; RELEVANCE VECTOR MACHINE; RVM MODELS; SENSOR DATA;

EID: 84880152914     PISSN: 1024123X     EISSN: 15635147     Source Type: Journal    
DOI: 10.1155/2013/579693     Document Type: Article
Times cited : (6)

References (16)
  • 1
    • 84862932217 scopus 로고    scopus 로고
    • The application of analytic hierarchy process in mine gas prevention system
    • 2-s2.0-84856098989 10.1016/j.proeng.2011.11.2341
    • Zhang J., The application of analytic hierarchy process in mine gas prevention system. Procedia Engineering 2011 1576 1584 2-s2.0-84856098989 10.1016/j.proeng.2011.11.2341
    • (2011) Procedia Engineering , pp. 1576-1584
    • Zhang, J.1
  • 2
    • 79951553140 scopus 로고    scopus 로고
    • Simulation of an enhanced gas recovery field trial for coal mine gas management
    • 2-s2.0-79951553140 10.1016/j.coal.2010.11.013
    • Packham R., Cinar Y., Moreby R., Simulation of an enhanced gas recovery field trial for coal mine gas management. International Journal of Coal Geology 2011 85 3-4 247 256 2-s2.0-79951553140 10.1016/j.coal.2010.11.013
    • (2011) International Journal of Coal Geology , vol.85 , Issue.3-4 , pp. 247-256
    • Packham, R.1    Cinar, Y.2    Moreby, R.3
  • 3
    • 84861742573 scopus 로고    scopus 로고
    • How in situ stresses and the driving cycle footage affect the gas outburst risk of driving coal mine roadway
    • 10.1016/j.tust.2012.04.015
    • Yang W., Lin B., Zhai C., Li X., An S., How in situ stresses and the driving cycle footage affect the gas outburst risk of driving coal mine roadway. Tunnelling and Underground Space Technology 2012 31 139 148 10.1016/j.tust.2012.04.015
    • (2012) Tunnelling and Underground Space Technology , vol.31 , pp. 139-148
    • Yang, W.1    Lin, B.2    Zhai, C.3    Li, X.4    An, S.5
  • 4
    • 70449729805 scopus 로고    scopus 로고
    • Dynamic development characteristics of amounts of gas and levels of pressure in the Pan-1 coal mine of Huainan
    • 2-s2.0-70449729805 10.1016/S1674-5264(09)60135-6
    • Wang K. X., Fu X. H., Zhou Y. A., HE Y., Wu H., Dynamic development characteristics of amounts of gas and levels of pressure in the Pan-1 coal mine of Huainan. Mining Science and Technology 2009 19 6 740 744 2-s2.0-70449729805 10.1016/S1674-5264(09)60135-6
    • (2009) Mining Science and Technology , vol.19 , Issue.6 , pp. 740-744
    • Wang, K.X.1    Fu, X.H.2    Zhou, Y.A.3    He, Y.4    Wu, H.5
  • 5
    • 84880177969 scopus 로고    scopus 로고
    • The geological factor analysis of influenced Tianchi coal mine gas occurrence
    • 10.1016/j.proeng.2012.08.164
    • Wang W., Yan J., The geological factor analysis of influenced Tianchi coal mine gas occurrence. Procedia Engineering 2012 45 317 321 10.1016/j.proeng.2012.08.164
    • (2012) Procedia Engineering , vol.45 , pp. 317-321
    • Wang, W.1    Yan, J.2
  • 6
    • 84855356839 scopus 로고    scopus 로고
    • Safety line method for the prediction of deep coal-seam gas pressure and its application in coal mines
    • 2-s2.0-84855356839 10.1016/j.ssci.2011.09.022
    • Wang L., Cheng Y. P., Wang L., Guo P. K., Li W., Safety line method for the prediction of deep coal-seam gas pressure and its application in coal mines. Safety Science 2012 50 3 523 529 2-s2.0-84855356839 10.1016/j.ssci.2011.09.022
    • (2012) Safety Science , vol.50 , Issue.3 , pp. 523-529
    • Wang, L.1    Cheng, Y.P.2    Wang, L.3    Guo, P.K.4    Li, W.5
  • 7
    • 84857717489 scopus 로고    scopus 로고
    • A new method for dynamic modelling of bread dough kneading based on artificial neural network
    • 2-s2.0-84857717489 10.1016/j.foodcont.2012.01.011
    • Lamrini B., Della Valle G., Trelea I. C., Perrot N., Trystram G., A new method for dynamic modelling of bread dough kneading based on artificial neural network. Food Control 2012 26 2 512 524 2-s2.0-84857717489 10.1016/j.foodcont. 2012.01.011
    • (2012) Food Control , vol.26 , Issue.2 , pp. 512-524
    • Lamrini, B.1    Della Valle, G.2    Trelea, I.C.3    Perrot, N.4    Trystram, G.5
  • 8
    • 84871718113 scopus 로고    scopus 로고
    • Daily suspended sediment load prediction using artificial neural networks and support vector machines
    • Lafdani E. K., Nia A. M., Ahmadi A., Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology 2013 478 50 62
    • (2013) Journal of Hydrology , vol.478 , pp. 50-62
    • Lafdani, E.K.1    Nia, A.M.2    Ahmadi, A.3
  • 9
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • 2-s2.0-78751608738 10.1016/j.asoc.2010.10.015
    • Khashei M., Bijari M., A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing Journal 2011 11 2 2664 2675 2-s2.0-78751608738 10.1016/j.asoc.2010.10.015
    • (2011) Applied Soft Computing Journal , vol.11 , Issue.2 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 10
    • 77957891947 scopus 로고    scopus 로고
    • Hybrid robust support vector machines for regression with outliers
    • 2-s2.0-77957891947 10.1016/j.asoc.2009.10.017
    • Chuang C. C., Lee Z. J., Hybrid robust support vector machines for regression with outliers. Applied Soft Computing Journal 2011 11 1 64 72 2-s2.0-77957891947 10.1016/j.asoc.2009.10.017
    • (2011) Applied Soft Computing Journal , vol.11 , Issue.1 , pp. 64-72
    • Chuang, C.C.1    Lee, Z.J.2
  • 11
    • 79151477537 scopus 로고    scopus 로고
    • Spline regression based feature extraction for semiconductor process fault detection using support vector machine
    • 2-s2.0-79151477537 10.1016/j.eswa.2010.10.062
    • Park J., Kwon I. H., Kim S. S., Baek J. G., Spline regression based feature extraction for semiconductor process fault detection using support vector machine. Expert Systems with Applications 2011 38 5 5711 5718 2-s2.0-79151477537 10.1016/j.eswa.2010.10.062
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 5711-5718
    • Park, J.1    Kwon, I.H.2    Kim, S.S.3    Baek, J.G.4
  • 12
    • 73749084376 scopus 로고    scopus 로고
    • Simultaneous chemiluminescence determination of thebaine and noscapine using support vector machine regression
    • 2-s2.0-73749084376 10.1016/j.saa.2009.12.021
    • Ensafi A. A., Hasanpour F., Khayamian T., Mokhtari A., Taei M., Simultaneous chemiluminescence determination of thebaine and noscapine using support vector machine regression. Spectrochimica Acta A 2010 75 2 867 871 2-s2.0-73749084376 10.1016/j.saa.2009.12.021
    • (2010) Spectrochimica Acta A , vol.75 , Issue.2 , pp. 867-871
    • Ensafi, A.A.1    Hasanpour, F.2    Khayamian, T.3    Mokhtari, A.4    Taei, M.5
  • 13
    • 77955660099 scopus 로고    scopus 로고
    • Relevance regression learning with support vector machines
    • 2-s2.0-77955660099 10.1016/j.na.2010.06.035 ZBL1205.68279
    • Apolloni B., Malchiodi D., Valerio L., Relevance regression learning with support vector machines. Nonlinear Analysis, Theory, Methods and Applications 2010 73 9 2855 2864 2-s2.0-77955660099 10.1016/j.na.2010.06.035 ZBL1205.68279
    • (2010) Nonlinear Analysis, Theory, Methods and Applications , vol.73 , Issue.9 , pp. 2855-2864
    • Apolloni, B.1    Malchiodi, D.2    Valerio, L.3
  • 14
    • 78649707510 scopus 로고    scopus 로고
    • Fully Bayesian analysis of the relevance vector machine with an extended hierarchical prior structure
    • 2-s2.0-78649707510 10.1016/j.stamet.2010.05.005 ZBL1213.62043
    • Fokoué E., Sun D., Goel P., Fully Bayesian analysis of the relevance vector machine with an extended hierarchical prior structure. Statistical Methodology 2011 8 1 83 96 2-s2.0-78649707510 10.1016/j.stamet.2010. 05.005 ZBL1213.62043
    • (2011) Statistical Methodology , vol.8 , Issue.1 , pp. 83-96
    • Fokoué, E.1    Sun, D.2    Goel, P.3
  • 15
    • 79951581566 scopus 로고    scopus 로고
    • A hybrid time-frequency method based on improved Morlet wavelet and auto terms window
    • 2-s2.0-79951581566 10.1016/j.eswa.2010.12.107
    • Liu W., Tang B., A hybrid time-frequency method based on improved Morlet wavelet and auto terms window. Expert Systems with Applications 2011 38 6 7575 7581 2-s2.0-79951581566 10.1016/j.eswa.2010.12.107
    • (2011) Expert Systems with Applications , vol.38 , Issue.6 , pp. 7575-7581
    • Liu, W.1    Tang, B.2
  • 16
    • 77954313196 scopus 로고    scopus 로고
    • Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution
    • 2-s2.0-77954313196 10.1016/j.renene.2010.05.012
    • Tang B., Liu W., Song T., Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution. Renewable Energy 2010 35 12 2862 2866 2-s2.0-77954313196 10.1016/j.renene.2010.05.012
    • (2010) Renewable Energy , vol.35 , Issue.12 , pp. 2862-2866
    • Tang, B.1    Liu, W.2    Song, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.