메뉴 건너뛰기




Volumn 58, Issue 3, 2013, Pages 175-184

A quantifier-based fuzzy classification system for breast cancer patients

Author keywords

Breast cancer; Fuzzy rules; Linguistic ruleset; Rule based classification

Indexed keywords

BREAST CANCER; CLUSTERING TECHNIQUES; FUZZY CLASSIFICATION SYSTEMS; FUZZY QUANTIFICATION; FUZZY RULE-BASED SYSTEMS; IMMUNOHISTOCHEMICAL ANALYSIS; RULE-BASED CLASSIFICATION; UNSUPERVISED CLASSIFICATION;

EID: 84880047077     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2013.04.006     Document Type: Article
Times cited : (26)

References (54)
  • 2
    • 0028048359 scopus 로고
    • Do we really need prognostic factors for breast cancer?
    • Clark G.M Do we really need prognostic factors for breast cancer? Breast Cancer Research and Treatment 1994, 30:117-126.
    • (1994) Breast Cancer Research and Treatment , vol.30 , pp. 117-126
    • Clark, G.M.1
  • 5
    • 0032820023 scopus 로고    scopus 로고
    • A critical appraisal of existing classification systems of epithelial hyperplasia and in situ neoplasia of the breast with proposals for future methods of categorization: where are we going?
    • Ellis I.O., Pinder S.E., Lee A.H., Elston C.W A critical appraisal of existing classification systems of epithelial hyperplasia and in situ neoplasia of the breast with proposals for future methods of categorization: where are we going? Seminars in Diagnostic Pathology 1999, 16:202-208.
    • (1999) Seminars in Diagnostic Pathology , vol.16 , pp. 202-208
    • Ellis, I.O.1    Pinder, S.E.2    Lee, A.H.3    Elston, C.W.4
  • 9
    • 77951625681 scopus 로고    scopus 로고
    • Clustering of high-dimensional gene expression data with feature filtering methods and diffusion maps
    • Xu R., Damelin S., Nadler B., Wunsch D.C Clustering of high-dimensional gene expression data with feature filtering methods and diffusion maps Artificial Intelligence in Medicine 2010, 48(2-3):91-98.
    • (2010) Artificial Intelligence in Medicine , vol.48 , Issue.2-3 , pp. 91-98
    • Xu, R.1    Damelin, S.2    Nadler, B.3    Wunsch, D.C.4
  • 10
    • 77951630294 scopus 로고    scopus 로고
    • Mixture classification model based on clinical markers for breast cancer prognosis
    • Zeng T., Liu J Mixture classification model based on clinical markers for breast cancer prognosis Artificial Intelligence in Medicine 2010, 48(2-3):129-137.
    • (2010) Artificial Intelligence in Medicine , vol.48 , Issue.2-3 , pp. 129-137
    • Zeng, T.1    Liu, J.2
  • 14
    • 4644285491 scopus 로고    scopus 로고
    • Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma
    • Makretsov N.A., Huntsman D.G., Nielsen T.O., Yorida E., Peacock M., Cheang M.C.U., et al Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma Clinical Cancer Research 2004, 10:6143-6151.
    • (2004) Clinical Cancer Research , vol.10 , pp. 6143-6151
    • Makretsov, N.A.1    Huntsman, D.G.2    Nielsen, T.O.3    Yorida, E.4    Peacock, M.5    Cheang, M.C.U.6
  • 16
    • 32944468709 scopus 로고    scopus 로고
    • Molecular subtyping of breast cancer from traditional tumor marker profiles using parallel clustering methods
    • Ambrogi F., Biganzoli E., Querzoli P., Ferretti S., Boracchi P., Alberti S., et al Molecular subtyping of breast cancer from traditional tumor marker profiles using parallel clustering methods Clinical Cancer Research 2006, 12(3):781-790.
    • (2006) Clinical Cancer Research , vol.12 , Issue.3 , pp. 781-790
    • Ambrogi, F.1    Biganzoli, E.2    Querzoli, P.3    Ferretti, S.4    Boracchi, P.5    Alberti, S.6
  • 17
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S., Tamayo P., Mesirov J., Golub T Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data Machine Learning 2003, 52:91-118.
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 18
    • 24944539029 scopus 로고    scopus 로고
    • Consensus clustering and functional interpretation of gene-expression data
    • Article R94
    • Swift S., Tucker A., Vinciotti V., Martin N., Orengo C., Liu X., et al Consensus clustering and functional interpretation of gene-expression data Genome Biology 2004, 5(11) Article R94.
    • (2004) Genome Biology , vol.5 , Issue.11
    • Swift, S.1    Tucker, A.2    Vinciotti, V.3    Martin, N.4    Orengo, C.5    Liu, X.6
  • 21
    • 77549085806 scopus 로고    scopus 로고
    • A methodology to identify consensus classes from clustering algorithms applied to immunohistochemical data from breast cancer patients
    • Soria D., Garibaldi J.M., Ambrogi F., Green A.R., Powe D., Rakha E., et al A methodology to identify consensus classes from clustering algorithms applied to immunohistochemical data from breast cancer patients Computers in Biology and Medicine 2010, 40:318-330.
    • (2010) Computers in Biology and Medicine , vol.40 , pp. 318-330
    • Soria, D.1    Garibaldi, J.M.2    Ambrogi, F.3    Green, A.R.4    Powe, D.5    Rakha, E.6
  • 25
    • 2042476687 scopus 로고    scopus 로고
    • Mining classification rules using rough sets and neural networks
    • Li R., Wang Z Mining classification rules using rough sets and neural networks European Journal of Operational Research 2004, 157(2):439-448.
    • (2004) European Journal of Operational Research , vol.157 , Issue.2 , pp. 439-448
    • Li, R.1    Wang, Z.2
  • 28
    • 0035415473 scopus 로고    scopus 로고
    • Effect of rule weights in fuzzy rule-based classification systems
    • Ishibuchi H., Nakashima T Effect of rule weights in fuzzy rule-based classification systems IEEE Transactions on Fuzzy Systems 2001, 9(4):506-515.
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.4 , pp. 506-515
    • Ishibuchi, H.1    Nakashima, T.2
  • 30
    • 34248582401 scopus 로고    scopus 로고
    • A TSK type fuzzy rule based system for stock price prediction
    • Chang P.-C., Liu C.-H A TSK type fuzzy rule based system for stock price prediction Expert Systems with Applications 2008, 34(1):135-144.
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 135-144
    • Chang, P.-C.1    Liu, C.-H.2
  • 31
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Ishibuchi H., Yamamoto T Rule weight specification in fuzzy rule-based classification systems IEEE Transactions on Fuzzy Systems 2005, 13(4):428-435.
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 35
    • 84885171463 scopus 로고    scopus 로고
    • Identification of key clinical phenotypes of breast cancer using a reduced panel of protein biomarkers
    • [submitted for publication]
    • Green A.R., Powe D.G., Rakha E.A., Soria D., Lemetre C., Nolan C.C., et al Identification of key clinical phenotypes of breast cancer using a reduced panel of protein biomarkers British Journal of Cancer 2013, [submitted for publication].
    • (2013) British Journal of Cancer
    • Green, A.R.1    Powe, D.G.2    Rakha, E.A.3    Soria, D.4    Lemetre, C.5    Nolan, C.C.6
  • 36
    • 0022982937 scopus 로고
    • Fuzzy entropy and conditioning
    • Kosko B Fuzzy entropy and conditioning Information Sciences 1986, 40(2):165-174.
    • (1986) Information Sciences , vol.40 , Issue.2 , pp. 165-174
    • Kosko, B.1
  • 37
  • 38
    • 0012280862 scopus 로고    scopus 로고
    • A new method for generating fuzzy rules from numerical data for handling classification problems
    • Chen S.M., Lee S.H., Lee C.H A new method for generating fuzzy rules from numerical data for handling classification problems Applied Artificial Intelligence 2001, 15:645-664.
    • (2001) Applied Artificial Intelligence , vol.15 , pp. 645-664
    • Chen, S.M.1    Lee, S.H.2    Lee, C.H.3
  • 40
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R Induction of decision trees Machine Learning 1986, 1:81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 41
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • Yuan Y., Shaw M.J Induction of fuzzy decision trees Fuzzy Sets and Systems 1995, 69(2):125-139.
    • (1995) Fuzzy Sets and Systems , vol.69 , Issue.2 , pp. 125-139
    • Yuan, Y.1    Shaw, M.J.2
  • 45
    • 84897578461 scopus 로고    scopus 로고
    • Nottingham prognostic index plus (NPI+): a modern clinical decision making tool in breast cancer
    • [submitted for publication]
    • Rakha E., Soria D., Lemetre C., Green A.R., Powe D.G., Nolan C.C., et al Nottingham prognostic index plus (NPI+): a modern clinical decision making tool in breast cancer British Journal of Cancer 2013, [submitted for publication].
    • (2013) British Journal of Cancer
    • Rakha, E.1    Soria, D.2    Lemetre, C.3    Green, A.R.4    Powe, D.G.5    Nolan, C.C.6
  • 46
    • 22244449596 scopus 로고    scopus 로고
    • High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses
    • Abd El-Rehim D.M., Ball G., Pinder S.E., Rakha E., Paish C., Robertson J.F., et al High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses International Journal of Cancer 2005, 116:340-350.
    • (2005) International Journal of Cancer , vol.116 , pp. 340-350
    • Abd El-Rehim, D.M.1    Ball, G.2    Pinder, S.E.3    Rakha, E.4    Paish, C.5    Robertson, J.F.6
  • 48
    • 84880044923 scopus 로고    scopus 로고
    • Nottingham Prognostic Ltd
    • Company number: 0803561;
    • Nottingham Prognostic Ltd Company number: 0803561; 2012.
    • (2012)
  • 50
    • 0002282074 scopus 로고
    • A new measure of rank correlation
    • Kendall M.G A new measure of rank correlation Biometrika 1938, 30(1/2):81-93.
    • (1938) Biometrika , vol.30 , Issue.1-2 , pp. 81-93
    • Kendall, M.G.1
  • 53
    • 7944221151 scopus 로고    scopus 로고
    • Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma
    • Abd El-Rehim D.M., Pinder S.E., Paish C.E., Bell J.A., Rampaul R.S., Blamey R.W., et al Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma British Journal of Cancer 2004, 91(8):1532-1542.
    • (2004) British Journal of Cancer , vol.91 , Issue.8 , pp. 1532-1542
    • Abd El-Rehim, D.M.1    Pinder, S.E.2    Paish, C.E.3    Bell, J.A.4    Rampaul, R.S.5    Blamey, R.W.6
  • 54
    • 72549086593 scopus 로고    scopus 로고
    • Microarray-based determination of estrogen receptor, progesterone receptor, and HER2 receptor status in breast cancer
    • Roepman P., Horlings H.M., Krijgsman O., Kok M., Bueno-de Mesquita J.M., Bender R., et al Microarray-based determination of estrogen receptor, progesterone receptor, and HER2 receptor status in breast cancer Clinical Cancer Research 2009, 15(22):7003-7011.
    • (2009) Clinical Cancer Research , vol.15 , Issue.22 , pp. 7003-7011
    • Roepman, P.1    Horlings, H.M.2    Krijgsman, O.3    Kok, M.4    Bueno-de Mesquita, J.M.5    Bender, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.