메뉴 건너뛰기




Volumn 55, Issue 4, 2013, Pages 541-553

Latent class regression: Inference and estimation with two-stage multiple imputation

Author keywords

Latent class regression; Missing data; Missing information; Multiple imputation

Indexed keywords

MAXIMUM LIKELIHOOD ESTIMATION;

EID: 84879997250     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201200020     Document Type: Article
Times cited : (10)

References (38)
  • 1
    • 0027278563 scopus 로고
    • Quasi-symmetric latent class models, with application to rater agreement
    • Agresti, A. and Lang, J. (1993). Quasi-symmetric latent class models, with application to rater agreement. Biometrics 49, 131-139.
    • (1993) Biometrics , vol.49 , pp. 131-139
    • Agresti, A.1    Lang, J.2
  • 3
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • Bodner, T. (2008). What improves with increased missing data imputations? Structural Equation Modeling 15, 651-675.
    • (2008) Structural Equation Modeling , vol.15 , pp. 651-675
    • Bodner, T.1
  • 5
    • 33748792000 scopus 로고    scopus 로고
    • Latent class logistic regression: application to marijuana use and attitudes among high school seniors
    • Chung, H., Flaherty, B. P. and Schafer, J. L. (2006). Latent class logistic regression: application to marijuana use and attitudes among high school seniors. Journal of the Royal Statistical Society, Series A 169, 723-743.
    • (2006) Journal of the Royal Statistical Society, Series A , vol.169 , pp. 723-743
    • Chung, H.1    Flaherty, B.P.2    Schafer, J.L.3
  • 6
    • 84950944685 scopus 로고
    • Latent structure analysis of a set of multidimensional contingency tables
    • Clogg, C. C. and Goodman, L. A. (1984). Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association 79, 762-771.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 762-771
    • Clogg, C.C.1    Goodman, L.A.2
  • 12
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identifiable and unidentifiable models
    • Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61, 215-231.
    • (1974) Biometrika , vol.61 , pp. 215-231
    • Goodman, L.A.1
  • 13
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham, J., Olchowski, A. and Gilreath, T. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 8, 206-213.
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.1    Olchowski, A.2    Gilreath, T.3
  • 14
    • 33845210459 scopus 로고    scopus 로고
    • Inferences on missing information under multiple imputation and two-stage multiple imputation
    • Harel, O. (2007). Inferences on missing information under multiple imputation and two-stage multiple imputation. Statistical Methodology 4, 75-89.
    • (2007) Statistical Methodology , vol.4 , pp. 75-89
    • Harel, O.1
  • 16
    • 85163228565 scopus 로고    scopus 로고
    • The impact of model mis-specification on the outfluence
    • In: Vanhoof, K., Ruan, D., Li, T. and Wets, G. (Eds.), World Scientific Proceedings Series on Computer Engineering and Information Science. World Scientific, Danvers, MA
    • Harel, O. (2009a). The impact of model mis-specification on the outfluence. In: Vanhoof, K., Ruan, D., Li, T. and Wets, G. (Eds.), Intelligence Decision Making Systems. World Scientific Proceedings Series on Computer Engineering and Information Science. World Scientific, Danvers, MA, pp. 221-226.
    • (2009) Intelligence Decision Making Systems , pp. 221-226
    • Harel, O.1
  • 18
    • 77952981703 scopus 로고    scopus 로고
    • Missing information as a diagnostic tool for latent class analysis
    • Harel, O. and Miglioretti, D. (2007). Missing information as a diagnostic tool for latent class analysis. Journal of Data Science 5, 269-288.
    • (2007) Journal of Data Science , vol.5 , pp. 269-288
    • Harel, O.1    Miglioretti, D.2
  • 19
    • 84865164498 scopus 로고    scopus 로고
    • Are we missing the importance of missing values in HIV prevention randomized clinical trials? Review and recommendations
    • Harel, O., Pellowski, J. and Kalichman, S. (2012). Are we missing the importance of missing values in HIV prevention randomized clinical trials? Review and recommendations. AIDS and Behavior, 16, 1382-1393.
    • (2012) AIDS and Behavior , vol.16 , pp. 1382-1393
    • Harel, O.1    Pellowski, J.2    Kalichman, S.3
  • 20
    • 60449120489 scopus 로고    scopus 로고
    • Partial and latent ignorability in missing-data problems
    • Harel, O. and Schafer, J. (2009). Partial and latent ignorability in missing-data problems. Biometrika 96, 37-50.
    • (2009) Biometrika , vol.96 , pp. 37-50
    • Harel, O.1    Schafer, J.2
  • 21
    • 70249149311 scopus 로고    scopus 로고
    • Inferences on the outfluence-how do missing values impact your analysis?
    • Harel, O. and Stratton, J. (2009). Inferences on the outfluence-how do missing values impact your analysis? Communications in Statistics-Theory and Methods 38, 2884-2898.
    • (2009) Communications in Statistics-Theory and Methods , vol.38 , pp. 2884-2898
    • Harel, O.1    Stratton, J.2
  • 22
    • 34250686456 scopus 로고    scopus 로고
    • Multiple imputation: review of theory, implementation and software
    • Harel, O. and Zhou, X.-H. (2007). Multiple imputation: review of theory, implementation and software. Statistics in Medicine 26, 3057-3077.
    • (2007) Statistics in Medicine , vol.26 , pp. 3057-3077
    • Harel, O.1    Zhou, X.-H.2
  • 23
    • 8344228503 scopus 로고    scopus 로고
    • Confidence intervals for partially identified parameters
    • Imbens, G. W. and Manski, C. F. (2004). Confidence intervals for partially identified parameters. Econometrica 72, 1845-1857.
    • (2004) Econometrica , vol.72 , pp. 1845-1857
    • Imbens, G.W.1    Manski, C.F.2
  • 24
    • 85008852620 scopus 로고    scopus 로고
    • Inferences for two stage multiple imputation for nonresponse
    • Kinney, S. and Reiter, J. (2009). Inferences for two stage multiple imputation for nonresponse. Journal of Statistical Theory and Practice 3, 307-318.
    • (2009) Journal of Statistical Theory and Practice , vol.3 , pp. 307-318
    • Kinney, S.1    Reiter, J.2
  • 31
    • 0345241817 scopus 로고    scopus 로고
    • Nested multiple imputation of NMES via partially incompatible MCMC
    • Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica 57, 3-18.
    • (2003) Statistica Neerlandica , vol.57 , pp. 3-18
    • Rubin, D.B.1
  • 33
    • 85163225452 scopus 로고    scopus 로고
    • Nested Multiple Imputation. Ph.D. Thesis, Department of Statistics, Harverd University, Cambridge, MA.
    • Shen, Z. (2000). Nested Multiple Imputation. Ph.D. Thesis, Department of Statistics, Harverd University, Cambridge, MA.
    • (2000)
    • Shen, Z.1
  • 36
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of Statistics 22, 1701-1762.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 38
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White, I., Royston, P. and Wood, A. (2011). Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 30, 377-399.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.1    Royston, P.2    Wood, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.