메뉴 건너뛰기




Volumn 96, Issue 1, 2009, Pages 37-50

Partial and latent ignorability in missing-data problems

Author keywords

Missing not at random; Multiple imputation; Nonignorable missingness

Indexed keywords


EID: 60449120489     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asn069     Document Type: Article
Times cited : (55)

References (45)
  • 1
    • 0026959051 scopus 로고
    • Modelling patterns of agreement and disagreement
    • AGRESTI, A. (1992). Modelling patterns of agreement and disagreement. Statist. Meth. Med. Res. 1, 201-18.
    • (1992) Statist. Meth. Med. Res , vol.1 , pp. 201-218
    • AGRESTI, A.1
  • 2
    • 84972622986 scopus 로고
    • Latent-class models in educational research
    • Ed. E. W. Gordon, pp, Washington, DC: American. Educational Research Association
    • BERGAN, J. R. (1983). Latent-class models in educational research. In Review of Research in Education, vol. 10, Ed. E. W. Gordon, pp. 305-60. Washington, DC: American. Educational Research Association.
    • (1983) Review of Research in Education , vol.10 , pp. 305-360
    • BERGAN, J.R.1
  • 3
    • 17444386117 scopus 로고    scopus 로고
    • Enumeration accuracy in a population census: An evaluation using latent class analysis
    • BIEMER, P. P., WOLTMANN, H., RAGLIN, D. & HILL, J. (2001). Enumeration accuracy in a population census: An evaluation using latent class analysis. J. Offic. Statist. 17, 129-48.
    • (2001) J. Offic. Statist , vol.17 , pp. 129-148
    • BIEMER, P.P.1    WOLTMANN, H.2    RAGLIN, D.3    HILL, J.4
  • 4
    • 33748792000 scopus 로고    scopus 로고
    • Latent-class logistic regression: Application to marijuana use and attitudes among high-school seniors
    • CHUNG, H., FLAHERTY, B. P. & SCHAFER, J. L. (2006). Latent-class logistic regression: Application to marijuana use and attitudes among high-school seniors. J. R. Statist. Soc. A 169, 723-43.
    • (2006) J. R. Statist. Soc. A , vol.169 , pp. 723-743
    • CHUNG, H.1    FLAHERTY, B.P.2    SCHAFER, J.L.3
  • 5
    • 84950944685 scopus 로고
    • Latent structure analysis of a set of multidimensional contingency tables
    • CLOGG, C. C. & GOODMAN, L. A. (1984). Latent structure analysis of a set of multidimensional contingency tables. J. Am. Statist. Assoc. 79, 762-71.
    • (1984) J. Am. Statist. Assoc , vol.79 , pp. 762-771
    • CLOGG, C.C.1    GOODMAN, L.A.2
  • 7
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis (with Discussion)
    • DIGGLE, P. J. & KENWARD, M. G. (1994). Informative dropout in longitudinal data analysis (with Discussion). Appl. Statist. 43, 49-94.
    • (1994) Appl. Statist , vol.43 , pp. 49-94
    • DIGGLE, P.J.1    KENWARD, M.G.2
  • 8
    • 0000741850 scopus 로고    scopus 로고
    • Addressing complications of intent-to-treat analysis in the combined presence of all-or-none treatment-non-compliance and subsequent missing outcomes
    • FRANGAKIS, C. E. & RUBIN, D. B. (1999). Addressing complications of intent-to-treat analysis in the combined presence of all-or-none treatment-non-compliance and subsequent missing outcomes. Biometrika 86, 365-79.
    • (1999) Biometrika , vol.86 , pp. 365-379
    • FRANGAKIS, C.E.1    RUBIN, D.B.2
  • 9
    • 0033636097 scopus 로고    scopus 로고
    • Latent class model diagnosis
    • GARRETT, E. S. & ZEGER, S. L. (2000). Latent class model diagnosis. Biometrics 56, 1055-67.
    • (2000) Biometrics , vol.56 , pp. 1055-1067
    • GARRETT, E.S.1    ZEGER, S.L.2
  • 10
    • 21144481276 scopus 로고
    • Multiple imputation in mixture models for nonignorable nonresponse with follow-ups
    • GLYNN, R. J., LAIRD, N. M. & RUBIN, D. B. (1993). Multiple imputation in mixture models for nonignorable nonresponse with follow-ups. J. Am. Statist. Assoc. 88, 984-93.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 984-993
    • GLYNN, R.J.1    LAIRD, N.M.2    RUBIN, D.B.3
  • 11
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identifiable and unidentifiable models
    • GOODMAN, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61, 215-31.
    • (1974) Biometrika , vol.61 , pp. 215-231
    • GOODMAN, L.A.1
  • 12
    • 0012411403 scopus 로고    scopus 로고
    • GROVES, R. M, DILLMAN, D. A, ELTINGE, J. L. & LITTLE, R. J. A, eds, New York: Wiley
    • GROVES, R. M., DILLMAN, D. A., ELTINGE, J. L. & LITTLE, R. J. A. (eds) (2002). Survey Nonresponse. New York: Wiley.
    • (2002) Survey Nonresponse
  • 13
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • HEDEKER, D. & GIBBONS, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychol. Meth. 2, 64-78.
    • (1997) Psychol. Meth , vol.2 , pp. 64-78
    • HEDEKER, D.1    GIBBONS, R.D.2
  • 14
    • 0040901467 scopus 로고    scopus 로고
    • Ignorability, sufficiency and ancillarity
    • HEITJAN, D. F. (1997). Ignorability, sufficiency and ancillarity. J. R. Statist. Soc. B 59, 375-81.
    • (1997) J. R. Statist. Soc. B , vol.59 , pp. 375-381
    • HEITJAN, D.F.1
  • 15
    • 0032382315 scopus 로고    scopus 로고
    • Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: Applications to educational testing
    • HOIJTINK, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: Applications to educational testing. Statist. Sínica 8, 691-711.
    • (1998) Statist. Sínica , vol.8 , pp. 691-711
    • HOIJTINK, H.1
  • 16
    • 0031798932 scopus 로고    scopus 로고
    • The structure of psychosis: Latent class analysis of probands from, the Roscommon Family Study
    • KENDLER, K. S., KARKOWSKI, L. M. & WALSH, D. (1998). The structure of psychosis: latent class analysis of probands from, the Roscommon Family Study. Arch. Gener. Psychiat. 55, 492-99.
    • (1998) Arch. Gener. Psychiat , vol.55 , pp. 492-499
    • KENDLER, K.S.1    KARKOWSKI, L.M.2    WALSH, D.3
  • 17
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with nonrandom. dropout: An illustration of sensitivity
    • KENWARD, M. G. (1998). Selection models for repeated measurements with nonrandom. dropout: An illustration of sensitivity. Statist. Med. 17, 2723-32.
    • (1998) Statist. Med , vol.17 , pp. 2723-2732
    • KENWARD, M.G.1
  • 18
    • 0345734935 scopus 로고    scopus 로고
    • Likelihood-based frequentist inference when data are missing at random
    • KENWARD, M. G. & MOLENBERGHS, G. (1998). Likelihood-based frequentist inference when data are missing at random. Statist. Sci. 13, 236-47.
    • (1998) Statist. Sci , vol.13 , pp. 236-247
    • KENWARD, M.G.1    MOLENBERGHS, G.2
  • 19
    • 17444404172 scopus 로고    scopus 로고
    • Using data augmentation to obtain standard errors and conduct hypothesis tests in latent class and latent transition analysis
    • LANZA, S. T., COLLINS, L. M., SCHÄFER, J. L. & FLAHERTY, B. P. (2005). Using data augmentation to obtain standard errors and conduct hypothesis tests in latent class and latent transition analysis. Psychol. Meth. 10, 84-100.
    • (2005) Psychol. Meth , vol.10 , pp. 84-100
    • LANZA, S.T.1    COLLINS, L.M.2    SCHÄFER, J.L.3    FLAHERTY, B.P.4
  • 20
    • 60449111391 scopus 로고    scopus 로고
    • LANZA, S. T., LEMMON, D. R., SCHAFER, J. L. & COLLINS, L. M. (2008). PROC LCA & PROC LTA User's Guide. University Park, PA: The Methodology Center, The Pennsylvania State University.
    • LANZA, S. T., LEMMON, D. R., SCHAFER, J. L. & COLLINS, L. M. (2008). PROC LCA & PROC LTA User's Guide. University Park, PA: The Methodology Center, The Pennsylvania State University.
  • 22
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • LITTLE, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. J. Am. Statist. Assoc. 84, 125-34.
    • (1993) J. Am. Statist. Assoc , vol.84 , pp. 125-134
    • LITTLE, R.J.A.1
  • 23
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism, in repeated-measured studies
    • LITTLE, R. J. A. (1995). Modeling the drop-out mechanism, in repeated-measured studies. J. Am. Statist. Assoc. 90, 1112-21.
    • (1995) J. Am. Statist. Assoc , vol.90 , pp. 1112-1121
    • LITTLE, R.J.A.1
  • 26
    • 0030299763 scopus 로고    scopus 로고
    • Multiple group association models with latent variables: An analysis of secular trends in abortion attitudes, 1972-1988
    • MCCUTCHEON, A. L. (1996). Multiple group association models with latent variables: An analysis of secular trends in abortion attitudes, 1972-1988. Sociol. Methodol. 26, 79-111.
    • (1996) Sociol. Methodol , vol.26 , pp. 79-111
    • MCCUTCHEON, A.L.1
  • 30
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • ROSENBAUM, P. R. & RUBIN, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika. 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • ROSENBAUM, P.R.1    RUBIN, D.B.2
  • 31
    • 0017133178 scopus 로고
    • Inference and missing data
    • RUBIN, D. B. (1976). Inference and missing data. Biometrika 63, 581-92.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • RUBIN, D.B.1
  • 32
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of nonrespondents in sample surveys
    • RUBIN, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. J. Am. Statist. Assoc. 72, 538-43.
    • (1977) J. Am. Statist. Assoc , vol.72 , pp. 538-543
    • RUBIN, D.B.1
  • 35
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for non-ignorable drop-out using semiparametric nonresponse models (with Discussion)
    • SCHARFSTEIN, D. O., ROTNITZKY, A. & ROBINS, J. M. (1999). Adjusting for non-ignorable drop-out using semiparametric nonresponse models (with Discussion). J. Am. Statist. Assoc. 94, 1096-46.
    • (1999) J. Am. Statist. Assoc , vol.94 , pp. 1096-1146
    • SCHARFSTEIN, D.O.1    ROTNITZKY, A.2    ROBINS, J.M.3
  • 36
    • 27744495913 scopus 로고    scopus 로고
    • Multiple imputation: How it began and continues
    • SCHEUREN, F. (2005). Multiple imputation: How it began and continues. Am. Statistician 59, 315-9.
    • (2005) Am. Statistician , vol.59 , pp. 315-319
    • SCHEUREN, F.1
  • 37
    • 0027092589 scopus 로고
    • Methods for the analysis of informatively censored longitudinal data
    • SCHLUCHTER, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statist. Med. 11, 1861-70.
    • (1992) Statist. Med , vol.11 , pp. 1861-1870
    • SCHLUCHTER, M.D.1
  • 42
    • 0035102436 scopus 로고    scopus 로고
    • Sensitivity analysis for non-random dropout: A local influence approach
    • VERBEKE, G., MOLENBERGHS, G., THIJS, H., LESAFFRE, E. & KENWARD, M. G. (2001). Sensitivity analysis for non-random dropout: A local influence approach. Biometrics 57, 7-14.
    • (2001) Biometrics , vol.57 , pp. 7-14
    • VERBEKE, G.1    MOLENBERGHS, G.2    THIJS, H.3    LESAFFRE, E.4    KENWARD, M.G.5
  • 44
    • 41149167559 scopus 로고    scopus 로고
    • Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data
    • WU, L., HU, X. J. & WU, H. (2008). Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data. Biostatistics 9, 308-20.
    • (2008) Biostatistics , vol.9 , pp. 308-320
    • WU, L.1    HU, X.J.2    WU, H.3
  • 45
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • WU, M. C. & CARROLL, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-88.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • WU, M.C.1    CARROLL, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.