-
1
-
-
74549174585
-
DNA Microarrays Are Predictive of Cancer Prognosis: A Re-evaluation
-
Fan XH, Shi LM, Fang H, Cheng YY, Perkins R, et al. (2010) DNA Microarrays Are Predictive of Cancer Prognosis: A Re-evaluation. Clin Cancer Res 16: 629-636.
-
(2010)
Clin Cancer Res
, vol.16
, pp. 629-636
-
-
Fan, X.H.1
Shi, L.M.2
Fang, H.3
Cheng, Y.Y.4
Perkins, R.5
-
2
-
-
84984932472
-
Exploring the new world of the genome with DNA microarrays
-
Brown PO, Botstein D, (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21: 33-37.
-
(1999)
Nat Genet
, vol.21
, pp. 33-37
-
-
Brown, P.O.1
Botstein, D.2
-
3
-
-
0029852580
-
Use of a cDNA microarray to analyse gene expression patterns in human cancer
-
DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14: 457-460.
-
(1996)
Nat Genet
, vol.14
, pp. 457-460
-
-
DeRisi, J.1
Penland, L.2
Brown, P.O.3
Bittner, M.L.4
Meltzer, P.S.5
-
4
-
-
2942729848
-
Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer
-
Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, et al. (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22: 2284-2293.
-
(2004)
J Clin Oncol
, vol.22
, pp. 2284-2293
-
-
Ayers, M.1
Symmans, W.F.2
Stec, J.3
Damokosh, A.I.4
Clark, E.5
-
5
-
-
0037137519
-
A gene-expression signature as a predictor of survival in breast cancer
-
van de Vijver MJ, He YD, van 't Veer LJ, Dai H, Hart AAM, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999-2009.
-
(2002)
N Engl J Med
, vol.347
, pp. 1999-2009
-
-
van de Vijver, M.J.1
He, Y.D.2
van 't Veer, L.J.3
Dai, H.4
Hart, A.A.M.5
-
6
-
-
84879804581
-
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
-
The MicroArray Quality Control Consortium
-
The MicroArray Quality Control Consortium (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Pharmacogenomics J: S5-S16.
-
(2010)
Pharmacogenomics J
-
-
-
7
-
-
0032518092
-
Using a stopping rule to determine the size of the training sample in a classification problem
-
Kundu S, Martinsek AT, (1998) Using a stopping rule to determine the size of the training sample in a classification problem. Stat Probab Lett 37: 19-27.
-
(1998)
Stat Probab Lett
, vol.37
, pp. 19-27
-
-
Kundu, S.1
Martinsek, A.T.2
-
8
-
-
0036738906
-
Determination of minimum sample size and discriminatory expression patterns in microarray data
-
Hwang DH, Schmitt WA, Stephanopoulos G, (2002) Determination of minimum sample size and discriminatory expression patterns in microarray data. Bioinformatics 18: 1184-1193.
-
(2002)
Bioinformatics
, vol.18
, pp. 1184-1193
-
-
Hwang, D.H.1
Schmitt, W.A.2
Stephanopoulos, G.3
-
9
-
-
4344593785
-
Power and sample size estimation in high dimensional biology
-
Gadbury GL, Page GP, Edwards J, Kayo T, Prolla TA, et al. (2004) Power and sample size estimation in high dimensional biology. Stat Methods Med Res 13: 325-338.
-
(2004)
Stat Methods Med Res
, vol.13
, pp. 325-338
-
-
Gadbury, G.L.1
Page, G.P.2
Edwards, J.3
Kayo, T.4
Prolla, T.A.5
-
10
-
-
12744260155
-
How many samples are needed to build a classifier: a general sequential approach
-
Fu WJJ, Dougherty ER, Mallick B, Carroll RJ, (2005) How many samples are needed to build a classifier: a general sequential approach. Bioinformatics 21: 63-70.
-
(2005)
Bioinformatics
, vol.21
, pp. 63-70
-
-
Fu, W.J.J.1
Dougherty, E.R.2
Mallick, B.3
Carroll, R.J.4
-
11
-
-
33845404310
-
Sample size planning for developing classifiers using high-dimensional DNA microarray data
-
Dobbin KK, Simon RM, (2007) Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 8: 101-117.
-
(2007)
Biostatistics
, vol.8
, pp. 101-117
-
-
Dobbin, K.K.1
Simon, R.M.2
-
12
-
-
70149093984
-
A simulation-approximation approach to sample size planning for high-dimensional classification studies
-
de Valpine P, Bitter HM, Brown MPS, Heller J, (2009) A simulation-approximation approach to sample size planning for high-dimensional classification studies. Biostatistics 10: 424-435.
-
(2009)
Biostatistics
, vol.10
, pp. 424-435
-
-
de Valpine, P.1
Bitter, H.M.2
Brown, M.P.S.3
Heller, J.4
-
14
-
-
67949103688
-
A weighted sample size for microarray datasets that considers the variability of variance and multiplicity
-
Kim KY, Chung HC, Rha SY, (2009) A weighted sample size for microarray datasets that considers the variability of variance and multiplicity. J Biosci Bioeng 108: 252-258.
-
(2009)
J Biosci Bioeng
, vol.108
, pp. 252-258
-
-
Kim, K.Y.1
Chung, H.C.2
Rha, S.Y.3
-
15
-
-
40749107034
-
How large a training set is needed to develop a classifier for microarray data?
-
Dobbin KK, Zhao Y, Simon RM, (2008) How large a training set is needed to develop a classifier for microarray data? Clin Cancer Res 14: 108-114.
-
(2008)
Clin Cancer Res
, vol.14
, pp. 108-114
-
-
Dobbin, K.K.1
Zhao, Y.2
Simon, R.M.3
-
16
-
-
26944473196
-
On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification
-
Van Niel TG, McVicar TR, Datt B, (2005) On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sens Environ 98: 468-480.
-
(2005)
Remote Sens Environ
, vol.98
, pp. 468-480
-
-
Van Niel, T.G.1
McVicar, T.R.2
Datt, B.3
-
17
-
-
77954168391
-
Effect of training-sample size and classification difficulty on the accuracy of genomic predictors
-
Popovici V, Chen WJ, Gallas BG, Hatzis C, Shi WW, et al. (2010) Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res 12.
-
(2010)
Breast Cancer Res
, vol.12
-
-
Popovici, V.1
Chen, W.J.2
Gallas, B.G.3
Hatzis, C.4
Shi, W.W.5
-
18
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
-
Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937-1947.
-
(2002)
N Engl J Med
, vol.346
, pp. 1937-1947
-
-
Rosenwald, A.1
Wright, G.2
Chan, W.C.3
Connors, J.M.4
Campo, E.5
-
19
-
-
13844310310
-
Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer
-
Wang YX, Klijn JGM, Zhang Y, Sieuwerts A, Look MP, et al. (2005) Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671-679.
-
(2005)
Lancet
, vol.365
, pp. 671-679
-
-
Wang, Y.X.1
Klijn, J.G.M.2
Zhang, Y.3
Sieuwerts, A.4
Look, M.P.5
-
20
-
-
77957935139
-
Genomic Index of Sensitivity to Endocrine Therapy for Breast Cancer
-
Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, et al. (2010) Genomic Index of Sensitivity to Endocrine Therapy for Breast Cancer. J Clin Oncol 28: 4111-4119.
-
(2010)
J Clin Oncol
, vol.28
, pp. 4111-4119
-
-
Symmans, W.F.1
Hatzis, C.2
Sotiriou, C.3
Andre, F.4
Peintinger, F.5
-
21
-
-
0016772212
-
Comparison of predicted and observed secondary structure of T4 phage lysozyme
-
Matthews BW, (1975) Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405: 442-451.
-
(1975)
Biochim Biophys Acta
, vol.405
, pp. 442-451
-
-
Matthews, B.W.1
-
22
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286: 531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
-
23
-
-
0038237368
-
Estimating dataset size requirements for classifying DNA microarray data
-
Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, et al. (2003) Estimating dataset size requirements for classifying DNA microarray data. Journal of Computational Biology 10: 119-142.
-
(2003)
Journal of Computational Biology
, vol.10
, pp. 119-142
-
-
Mukherjee, S.1
Tamayo, P.2
Rogers, S.3
Rifkin, R.4
Engle, A.5
-
24
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S, Fridlyand J, Speed TP, (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97: 77-87.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
|