메뉴 건너뛰기




Volumn 4, Issue 1, 2013, Pages 17-23

Damage detection in pipes under changing environmental conditions using embedded piezoelectric transducers and pattern recognition techniques

Author keywords

Damage detection; Environmental and operational variations; Machine learning; Nondestructive testing; Pattern recognition; Piezoelectric transducers; Pipeline; Structural health monitoring; Support vector machines; Ultrasonics

Indexed keywords

DAMAGE DETECTION; NONDESTRUCTIVE EXAMINATION; PATTERN RECOGNITION; PIEZOELECTRIC TRANSDUCERS; PIEZOELECTRICITY; PIPELINES; STRUCTURAL HEALTH MONITORING; ULTRASONIC TESTING; ULTRASONICS;

EID: 84879563720     PISSN: 19491190     EISSN: 19491204     Source Type: Journal    
DOI: 10.1061/(ASCE)PS.1949-1204.0000106     Document Type: Article
Times cited : (21)

References (12)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. (1998). "A tutorial on support vector machines for pattern recognition." Data Min. Knowl. Discov., 2(2), 121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 3
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and Vapnik, V. (1995). "Support-vector networks." Mach. Learn., 3(20), 273-297.
    • (1995) Mach. Learn. , vol.3 , Issue.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 4
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., and Schapire, R. E. (1997). "A decision-theoretic generalization of on-line learning and an application to boosting." J. Comput. Syst. Sci., 55(1), 119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 5
    • 0031994949 scopus 로고    scopus 로고
    • Defect detection in pipes using guided waves
    • Lowe, M. J. S., Alleyne, D. N., and Cawley, P. (1998). "Defect detection in pipes using guided waves." Ultrasonics, 36(1-5), 147-154.
    • (1998) Ultrasonics , vol.36 , Issue.1-5 , pp. 147-154
    • Lowe, M.J.S.1    Alleyne, D.N.2    Cawley, P.3
  • 6
    • 85008014383 scopus 로고    scopus 로고
    • Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions
    • Lu, Y., and Michaels, J. E. (2009). "Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions." IEEE Sensor. J., 9(11), 1462-1471.
    • (2009) IEEE Sensor. J. , vol.9 , Issue.11 , pp. 1462-1471
    • Lu, Y.1    Michaels, J.E.2
  • 8
    • 24944513857 scopus 로고    scopus 로고
    • Defect classification in pipes by neural networks using multiple guided ultrasonic wave features extracted after wavelet processing
    • Rizzo, P., Bartoli, I., Marzani, A., and Di Scalea, F. L. (2005). "Defect classification in pipes by neural networks using multiple guided ultrasonic wave features extracted after wavelet processing." J. Pressure Vessel Technol., 127(3), 294-303.
    • (2005) J. Pressure Vessel Technol. , vol.127 , Issue.3 , pp. 294-303
    • Rizzo, P.1    Bartoli, I.2    Marzani, A.3    Di Scalea, F.L.4
  • 9
    • 0001252638 scopus 로고    scopus 로고
    • Structural health monitoring using statistical pattern recognition techniques
    • Sohn, H., Farrar, C. R., Hunter, N. F., and Worden, K. (2001). "Structural health monitoring using statistical pattern recognition techniques." J. Dyn. Syst. Meas. Contr., 123(4), 706-711.
    • (2001) J. Dyn. Syst. Meas. Contr. , vol.123 , Issue.4 , pp. 706-711
    • Sohn, H.1    Farrar, C.R.2    Hunter, N.F.3    Worden, K.4
  • 10
    • 33846956777 scopus 로고    scopus 로고
    • The application of machine learning to structural health monitoring
    • Worden, K., and Manson, G. (2007). "The application of machine learning to structural health monitoring." Philos. Trans. R. Soc., A, 365(1851), 515-537.
    • (2007) Philos. Trans. R. Soc. A, , vol.365 , Issue.1851 , pp. 515-537
    • Worden, K.1    Manson, G.2
  • 11
    • 77953517936 scopus 로고    scopus 로고
    • Time reversal for damage detection in pipes
    • Ying, Y., et al. (2010). "Time reversal for damage detection in pipes." Proc. SPIE, 7647, 76473S.1-12.
    • (2010) Proc. SPIE , vol.7647
    • Ying, Y.1
  • 12
    • 80053143978 scopus 로고    scopus 로고
    • Applications of machine learning in pipeline monitoring
    • Miami, FL, ASCE, Reston, VA
    • Ying, Y., et al. (2011). "Applications of machine learning in pipeline monitoring." Proc., 2011 ASCE Int. Workshop on Computing in Civil Engineering, Miami, FL, ASCE, Reston, VA, 242-249.
    • (2011) Proc., 2011 ASCE Int. Workshop on Computing in Civil Engineering , pp. 242-249
    • Ying, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.