-
1
-
-
0009128834
-
Convergence rate of expected spectral distributions of large random matrices. II. Sample covariance matrices
-
MR1217560
-
BAI, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices. II. Sample covariance matrices. Ann. Probab. 21 649-672. MR1217560
-
(1993)
Ann. Probab
, vol.21
, pp. 649-672
-
-
Bai, Z.D.1
-
2
-
-
2142823889
-
CLT for linear spectral statistics of large-dimensional sample covariance matrices
-
MR2040792
-
BAI, Z. D. and SILVERSTEIN, J. W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32 553-605. MR2040792
-
(2004)
Ann. Probab
, vol.32
, pp. 553-605
-
-
Bai, Z.D.1
Silverstein, J.W.2
-
3
-
-
73949135723
-
Corrections to LRT on large-dimensional covariance matrix by RMT
-
MR2572444
-
BAI, Z., JIANG, D., YAO, J.-F. and ZHENG, S. (2009). Corrections to LRT on large-dimensional covariance matrix by RMT. Ann. Statist. 37 3822-3840. MR2572444
-
(2009)
Ann. Statist
, vol.37
, pp. 3822-3840
-
-
Bai, Z.1
Jiang, D.2
Yao, J.-F.3
Zheng, S.4
-
4
-
-
27644476898
-
Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
-
MR2165575
-
BAIK, J., BEN AROUS, G. and PÉCHÉ, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 1643-1697. MR2165575
-
(2005)
Ann. Probab
, vol.33
, pp. 1643-1697
-
-
Baik, J.1
Ben Arous, G.2
Péché, S.3
-
5
-
-
33646507506
-
Eigenvalues of large sample covariance matrices of spiked population models
-
MR2279680
-
BAIK, J. and SILVERSTEIN, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 1382-1408. MR2279680
-
(2006)
J. Multivariate Anal
, vol.97
, pp. 1382-1408
-
-
Baik, J.1
Silverstein, J.W.2
-
8
-
-
79952832913
-
Performance of statistical tests for single source detection using random matrix theory
-
BIANCHI, P., DEBBAH, M.,MAIDA, M. and NAJIM, J. (2011). Performance of statistical tests for single source detection using random matrix theory. IEEE Trans. Inform. Theory 57 2400-2419.
-
(2011)
IEEE Trans. Inform. Theory
, vol.57
, pp. 2400-2419
-
-
Bianchi, P.1
Debbah, M.2
Maida, M.3
Najim, J.4
-
9
-
-
23944490887
-
A note on testing the covariance matrix for large dimension
-
MR2189467
-
BIRKE, M. and DETTE, H. (2005). A note on testing the covariance matrix for large dimension. Statist. Probab. Lett. 74 281-289. MR2189467
-
(2005)
Statist. Probab. Lett
, vol.74
, pp. 281-289
-
-
Birke, M.1
Dette, H.2
-
10
-
-
84880640788
-
Limits of spiked random matrices i
-
To appear. DOI:10.1007/s00440-012-0443-2. Available at arXiv:1011.1877v2
-
BLOEMENDAL, A. and VIRÁG, B. (2012). Limits of spiked random matrices I. Probab. Theory Related Fields. To appear. DOI:10.1007/s00440-012- 0443-2. Available at arXiv:1011.1877v2.
-
(2012)
Probab. Theory Related Fields
-
-
Bloemendal, A.1
Virág, B.2
-
11
-
-
0036389689
-
Laplace approximations for hypergeometric functions with matrix argument
-
MR1926172
-
BUTLER, R.W. andWOOD, A. T. A. (2002). Laplace approximations for hypergeometric functions with matrix argument. Ann. Statist. 30 1155-1177. MR1926172
-
(2002)
Ann. Statist
, vol.30
, pp. 1155-1177
-
-
Butler, R.W.1
Wood, A.T.A.2
-
12
-
-
78649411926
-
Tests for high-dimensional covariance matrices
-
MR2724863
-
CHEN, S. X., ZHANG, L.-X. and ZHONG, P.-S. (2010). Tests for high-dimensional covariance matrices. J. Amer. Statist. Assoc. 105 810-819. MR2724863
-
(2010)
J. Amer. Statist. Assoc.
, vol.105
, pp. 810-819
-
-
Chen, S.X.1
Zhang, L.-X.2
Zhong, P.-S.3
-
13
-
-
84915676562
-
Multiple hypergeometric functions: Probabilistic interpretations and statistical uses
-
MR0721212
-
DICKEY, J. M. (1983). Multiple hypergeometric functions: Probabilistic interpretations and statistical uses. J. Amer. Statist. Assoc. 78 628-637. MR0721212
-
(1983)
J. Amer. Statist. Assoc
, vol.78
, pp. 628-637
-
-
Dickey, J.M.1
-
14
-
-
46749089905
-
Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices
-
MR2308592
-
EL KAROUI, N. (2007). Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. Ann. Probab. 35 663-714. MR2308592
-
(2007)
Ann. Probab
, vol.35
, pp. 663-714
-
-
El Karoui, N.1
-
15
-
-
0001529360
-
Beitrag zur theorie der konfluenten hypergeometrischen funktionen von mehreren veranderlichen
-
ERDELYI, A. (1937). Beitrag zur theorie der konfluenten hypergeometrischen funktionen von mehreren veranderlichen. Sitzungsberichte, Akademie der Wissenschaften in Wien, Abteilung IIa, Mathematisch- Naturwissenschaftliche Klasse 146 431-467.
-
(1937)
Sitzungsberichte, Akademie der Wissenschaften in Wien, Abteilung IIa, Mathematisch-Naturwissenschaftliche Klasse
, vol.146
, pp. 431-467
-
-
Erdelyi, A.1
-
16
-
-
68749084936
-
The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case
-
073302 MR2548630
-
FÉRAL, D. and PÉCHÉ, S. (2009). The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case. J. Math. Phys. 50 073302, 33. MR2548630
-
(2009)
J. Math. Phys
, vol.50
, pp. 33
-
-
Féral, D.1
Péché, S.2
-
17
-
-
77956758297
-
A new test for sphericity of the covariance matrix for high dimensional data
-
MR2719881
-
FISHER, T. J., SUN, X. and GALLAGHER, C. M. (2010). A new test for sphericity of the covariance matrix for high dimensional data. J. Multivariate Anal. 101 2554-2570. MR2719881
-
(2010)
J. Multivariate Anal.
, vol.101
, pp. 2554-2570
-
-
Fisher, T.J.1
Sun, X.2
Gallagher, C.M.3
-
18
-
-
16844362196
-
A Fourier view on the R-transform and related asymptotics of spherical integrals
-
MR2132396
-
GUIONNET, A. andMAÏDA, M. (2005). A Fourier view on the R-transform and related asymptotics of spherical integrals. J. Funct. Anal. 222 435-490. MR2132396
-
(2005)
J. Funct. Anal.
, vol.222
, pp. 435-490
-
-
Guionnet, A.1
Maïda, M.2
-
19
-
-
34547322109
-
Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity
-
MR2329465
-
HALLIN, M. and PAINDAVEINE, D. (2006). Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity. Ann. Statist. 34 2707-2756. MR2329465
-
(2006)
Ann. Statist.
, Issue.34
, pp. 2707-2756
-
-
Hallin, M.1
Paindaveine, D.2
-
20
-
-
0035625024
-
The density of a quadratic form in a vector uniformly distributed on the nsphere
-
MR1863565
-
HILLIER, G. (2001). The density of a quadratic form in a vector uniformly distributed on the nsphere. Econometric Theory 17 1-28. MR1863565
-
(2001)
Econometric Theory
, vol.17
, pp. 1-28
-
-
Hillier, G.1
-
21
-
-
58149310770
-
Automatic PCA dimension selection for high dimensional data and small sample sizes
-
HOYLE, D. C. (2008). Automatic PCA dimension selection for high dimensional data and small sample sizes. J. Mach. Learn. Res. 9 2733-2759.
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 2733-2759
-
-
Hoyle, D.C.1
-
22
-
-
0000952005
-
Distributions of matrix variates and latent roots derived from normal samples
-
MR0181057
-
JAMES, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 475-501. MR0181057
-
(1964)
Ann. Math. Statist
, vol.35
, pp. 475-501
-
-
James, A.T.1
-
23
-
-
0041611613
-
Some optimal multivariate tests
-
MR0275568
-
JOHN, S. (1971). Some optimal multivariate tests. Biometrika 58 123-127. MR0275568
-
(1971)
Biometrika
, vol.58
, pp. 123-127
-
-
John, S.1
-
24
-
-
0042613506
-
The distribution of a statistic used for testing sphericity of normal distributions
-
MR0312619
-
JOHN, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions. Biometrika 59 169-173. MR0312619
-
(1972)
Biometrika
, vol.59
, pp. 169-173
-
-
John, S.1
-
25
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
MR1863961
-
JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327. MR1863961
-
(2001)
Ann. Statist
, vol.29
, pp. 295-327
-
-
Johnstone, I.M.1
-
26
-
-
50249159453
-
Determining the number of components in a factor model from limited noisy data
-
KRITCHMAN, S. andNADLER, B. (2008). Determining the number of components in a factor model from limited noisy data. Chemometrics and Intelligent Laboratory Systems 94 19-32.
-
(2008)
Chemometrics and Intelligent Laboratory Systems
, vol.94
, pp. 19-32
-
-
Kritchman, S.1
Nadler, B.2
-
27
-
-
70349646485
-
Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory
-
MR2683143
-
KRITCHMAN, S. and NADLER, B. (2009). Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory. IEEE Trans. Signal Process. 57 3930-3941. MR2683143
-
(2009)
IEEE Trans. Signal Process
, vol.57
, pp. 3930-3941
-
-
Kritchman, S.1
Nadler, B.2
-
29
-
-
0036392431
-
Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size
-
MR1926169
-
LEDOIT, O. and WOLF, M. (2002). Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Statist. 30 1081-1102. MR1926169
-
(2002)
Ann. Statist
, vol.30
, pp. 1081-1102
-
-
Ledoit, O.1
Wolf, M.2
-
30
-
-
3042549467
-
Means of a Dirichlet process and multiple hypergeometric functions
-
MR2060305
-
LIJOI, A. and REGAZZINI, E. (2004). Means of a Dirichlet process and multiple hypergeometric functions. Ann. Probab. 32 1469-1495. MR2060305
-
(2004)
Ann. Probab
, vol.32
, pp. 1469-1495
-
-
Lijoi, A.1
Regazzini, E.2
-
31
-
-
0000141380
-
Significance test for sphericity of a normal n-variate distribution
-
MR0002084
-
MAUCHLY, J. W. (1940). Significance test for sphericity of a normal n-variate distribution. Ann. Math. Statist. 11 204-209. MR0002084
-
(1940)
Ann. Math. Statist
, vol.11
, pp. 204-209
-
-
Mauchly, J.W.1
-
32
-
-
84865532215
-
Rank 1 real Wishart spiked model
-
MR2969495
-
MO, M. Y. (2012). Rank 1 real Wishart spiked model. Comm. Pure Appl. Math. 65 1528-1638. MR2969495
-
(2012)
Comm. Pure Appl. Math.
, Issue.65
, pp. 1528-1638
-
-
Mo, M.Y.1
-
33
-
-
46749116893
-
Sample eigenvalue based detection of highdimensional signals in white noise using relatively few samples
-
MR1500236
-
NADAKUDITI, R. R. and EDELMAN, A. (2008). Sample eigenvalue based detection of highdimensional signals in white noise using relatively few samples. IEEE Trans. Signal Process. 56 2625-2638. MR1500236
-
(2008)
IEEE Trans. Signal Process
, vol.56
, pp. 2625-2638
-
-
Nadakuditi, R.R.1
Edelman, A.2
-
34
-
-
77952589875
-
Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples
-
NADAKUDITI, R. R. and SILVERSTEIN, J. W. (2010). Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples. IEEE Journal of Selected Topics in Signal Processing 4 468-480.
-
(2010)
IEEE Journal of Selected Topics in Signal Processing
, vol.4
, pp. 468-480
-
-
Nadakuditi, R.R.1
Silverstein, J.W.2
-
35
-
-
62349121558
-
Finite sample approximation results for principal component analysis: A matrix perturbation approach
-
MR2485013
-
NADLER, B. (2008). Finite sample approximation results for principal component analysis: A matrix perturbation approach. Ann. Statist. 36 2791-2817. MR2485013
-
(2008)
Ann. Statist
, vol.36
, pp. 2791-2817
-
-
Nadler, B.1
-
37
-
-
70349835782
-
Testing hypotheses about the numbers of factors in large factor models
-
MR2561070
-
ONATSKI, A. (2009). Testing hypotheses about the numbers of factors in large factor models. Econometrica 77 1447-1479. MR2561070
-
(2009)
Econometrica
, vol.77
, pp. 1447-1479
-
-
Onatski, A.1
-
38
-
-
78650967353
-
Determining the number of factors from empirical distribution of eigenvalues
-
ONATSKI, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. Rev. Econom. Statist. 92 1004-1016.
-
(2010)
Rev. Econom. Statist
, vol.92
, pp. 1004-1016
-
-
Onatski, A.1
-
40
-
-
33846006923
-
Population structure and eigenanalysis
-
PATTERSON, N., PRICE, A. L. and REICH, D. (2006). Population structure and eigenanalysis. PLoS Genetics 2 2074-2093.
-
(2006)
PLoS Genetics
, vol.2
, pp. 2074-2093
-
-
Patterson, N.1
Price, A.L.2
Reich, D.3
-
42
-
-
27944490752
-
A high-dimensional test for the equality of the smallest eigenvalues of a covariance matrix
-
MR2256563
-
SCHOTT, J. R. (2006). A high-dimensional test for the equality of the smallest eigenvalues of a covariance matrix. J. Multivariate Anal. 97 827-843. MR2256563
-
(2006)
J. Multivariate Anal
, vol.97
, pp. 827-843
-
-
Schott, J.R.1
-
43
-
-
0000602132
-
On the empirical distribution of eigenvalues of a class of large-dimensional random matrices
-
MR1345534
-
SILVERSTEIN, J.W. and BAI, Z. D. (1995). On the empirical distribution of eigenvalues of a class of large-dimensional random matrices. J. Multivariate Anal. 54 175-192. MR1345534
-
(1995)
J. Multivariate Anal.
, vol.54
, pp. 175-192
-
-
Silverstein, J.W.1
Bai, Z.D.2
-
44
-
-
33748417779
-
Some tests concerning the covariance matrix in high dimensional data
-
MR2328427
-
SRIVASTAVA, M. S. (2005). Some tests concerning the covariance matrix in high dimensional data. J. Japan Statist. Soc. 35 251-272. MR2328427
-
(2005)
J. Japan Statist. Soc
, vol.35
, pp. 251-272
-
-
Srivastava, M.S.1
-
46
-
-
30244441868
-
Locally best invariant test for sphericity and the limiting distributions
-
MR0311032
-
SUGIURA, N. (1972). Locally best invariant test for sphericity and the limiting distributions. Ann. Math. Statist. 43 1312-1316. MR0311032
-
(1972)
Ann. Math. Statist
, vol.43
, pp. 1312-1316
-
-
Sugiura, N.1
-
47
-
-
21344476194
-
On singular Wishart and singular multivariate beta distributions
-
MR1272090
-
UHLIG, H. (1994). On singular Wishart and singular multivariate beta distributions. Ann. Statist. 22 395-405. MR1272090
-
(1994)
Ann. Statist
, vol.22
, pp. 395-405
-
-
Uhlig, H.1
-
49
-
-
84862812048
-
The largest eigenvalue of real symmetric, Hermitian and Hermitian self-dual random matrix models with rank one external source, Part I
-
MR2916094
-
WANG, D. (2012). The largest eigenvalue of real symmetric, Hermitian and Hermitian self-dual random matrix models with rank one external source, Part I. J. Stat. Phys. 146 719-761. MR2916094
-
(2012)
J. Stat. Phys.
, vol.146
, pp. 719-761
-
-
Wang, D.1
|