메뉴 건너뛰기




Volumn 39, Issue 3, 2013, Pages 797-808

Steering kernel-based video moving objects detection with local background texture dictionaries

Author keywords

[No Author keywords available]

Indexed keywords

BACKGROUND TEXTURES; BOUNDARY SELECTION; DETECTION ALGORITHM; DETECTION OF MOVING OBJECT; ILLUMINATION CHANGES; MOVING OBJECTS DETECTION; SHADOW DETECTIONS; STATE-OF-THE-ART ALGORITHMS;

EID: 84879207323     PISSN: 00457906     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compeleceng.2012.09.012     Document Type: Article
Times cited : (3)

References (29)
  • 1
    • 80053143044 scopus 로고    scopus 로고
    • Recent advanced statistical background modeling for foreground detection - A systematic survey
    • B. Thierry Recent advanced statistical background modeling for foreground detection - A systematic survey Recent Pat Comput Sci 4 2011 147 176
    • (2011) Recent Pat Comput Sci , vol.4 , pp. 147-176
    • Thierry, B.1
  • 3
    • 0032073536 scopus 로고    scopus 로고
    • Optical flow estimation and moving object segmentation based on median radial basis function network
    • A.G. Bors, and I. Pitas Optical flow estimation and moving object segmentation based on median radial basis function network IEEE Trans Image Process 7 1998 693 702
    • (1998) IEEE Trans Image Process , vol.7 , pp. 693-702
    • Bors, A.G.1    Pitas, I.2
  • 4
    • 77953805207 scopus 로고    scopus 로고
    • Optical flow object detection, motion estimation, and tracking on moving vehicles using wavelet decompositions
    • The Society of Photo-Optical Instrumentation Engineers (SPIE) Orlando, FL, United states
    • M.P. Dessauer, and S. Dua Optical flow object detection, motion estimation, and tracking on moving vehicles using wavelet decompositions Ground/air multi-sensor interoperability, integration, and networking for persistent ISR, April 6, 2010-April 9, 2010 2010 The Society of Photo-Optical Instrumentation Engineers (SPIE) Orlando, FL, United states 7694 76941J
    • (2010) Ground/air Multi-sensor Interoperability, Integration, and Networking for Persistent ISR, April 6, 2010-April 9, 2010
    • Dessauer, M.P.1    Dua, S.2
  • 8
    • 10044240378 scopus 로고    scopus 로고
    • Improved adaptive Gaussian mixture model for background subtraction
    • August 23, 2004-August 26, 2004. Cambridge, United kingdom
    • Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th international conference on pattern recognition, ICPR 2004, August 23, 2004-August 26, 2004. Cambridge, United kingdom; 2004. p. 28-31.
    • (2004) Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004 , pp. 28-31
    • Zivkovic, Z.1
  • 9
    • 79951818849 scopus 로고    scopus 로고
    • Regularized background adaptation: A novel learning rate control scheme for gaussian mixture modeling
    • H. Lin, J. Chuang, and T. Liu Regularized background adaptation: a novel learning rate control scheme for gaussian mixture modeling IEEE Trans Image Process 20 2011 822 836
    • (2011) IEEE Trans Image Process , vol.20 , pp. 822-836
    • Lin, H.1    Chuang, J.2    Liu, T.3
  • 11
    • 58049114533 scopus 로고    scopus 로고
    • Background modeling method based on sequential kernel density approximation
    • October 22, 2008-October 24, 2008. Beijing, China
    • Wang H, Ren MW, Yang JY. Background modeling method based on sequential kernel density approximation. In: 2008 Chinese conference on pattern recognition, CCPR 2008, October 22, 2008-October 24, 2008. Beijing, China; 2008. p. 187-92.
    • (2008) 2008 Chinese Conference on Pattern Recognition, CCPR 2008 , pp. 187-192
    • Wang, H.1    Ren, M.W.2    Yang, J.Y.3
  • 12
    • 45349101870 scopus 로고    scopus 로고
    • Sequential kernel density approximation and its application to real-time visual tracking
    • B. Han, D. Comaniciu, Y. Zhu, and L.S. Davis Sequential kernel density approximation and its application to real-time visual tracking IEEE Trans Pattern Anal Mach Int 30 2008 1186 1197
    • (2008) IEEE Trans Pattern Anal Mach Int , vol.30 , pp. 1186-1197
    • Han, B.1    Comaniciu, D.2    Zhu, Y.3    Davis, L.S.4
  • 13
    • 61349170584 scopus 로고    scopus 로고
    • Detection and segmentation of moving objects in complex scenes
    • A. Bugeau, and P. Perez Detection and segmentation of moving objects in complex scenes Comput Vis Image Und 113 2009 459 476
    • (2009) Comput Vis Image und , vol.113 , pp. 459-476
    • Bugeau, A.1    Perez, P.2
  • 14
    • 69949105468 scopus 로고    scopus 로고
    • Non-parametric statistical background modeling for efficient foreground region detection
    • A. Tavakkoli, M. Nicolescu, G. Bebis, and M. Nicolescu Non-parametric statistical background modeling for efficient foreground region detection Mach Vision Appl 20 2009 395 409
    • (2009) Mach Vision Appl , vol.20 , pp. 395-409
    • Tavakkoli, A.1    Nicolescu, M.2    Bebis, G.3    Nicolescu, M.4
  • 15
    • 51549112753 scopus 로고    scopus 로고
    • Texture as pixel feature for video object segmentation
    • R. Ahmed, G.C. Karmakar, and L.S. Dooley Texture as pixel feature for video object segmentation Electron Lett 44 2008 1126 1127
    • (2008) Electron Lett , vol.44 , pp. 1126-1127
    • Ahmed, R.1    Karmakar, G.C.2    Dooley, L.S.3
  • 16
    • 77953870770 scopus 로고    scopus 로고
    • A novel texture-preceded segmentation algorithm for high-resolution imagery
    • N. Li, H. Huo, and T. Fang A novel texture-preceded segmentation algorithm for high-resolution imagery IEEE Trans Geosci Remote Sens 48 2010 2818 2828
    • (2010) IEEE Trans Geosci Remote Sens , vol.48 , pp. 2818-2828
    • Li, N.1    Huo, H.2    Fang, T.3
  • 18
    • 33144466752 scopus 로고    scopus 로고
    • A texture-based method for modeling the background and detecting moving objects
    • M. Heikkila, and M. Pietikainen A texture-based method for modeling the background and detecting moving objects IEEE Trans Pattern Anal Mach Int 28 2006 657 662
    • (2006) IEEE Trans Pattern Anal Mach Int , vol.28 , pp. 657-662
    • Heikkila, M.1    Pietikainen, M.2
  • 20
    • 0036474806 scopus 로고    scopus 로고
    • Integrating intensity and texture differences for robust change detection
    • L. Liyuan, and M.K.H. Leung Integrating intensity and texture differences for robust change detection IEEE Trans Image Process 11 2002 105 112
    • (2002) IEEE Trans Image Process , vol.11 , pp. 105-112
    • Liyuan, L.1    Leung, M.K.H.2
  • 22
    • 79961199383 scopus 로고    scopus 로고
    • A moving objects detection method based on a combination of improved local binary pattern texture and hue
    • G.W. Yuan, Y. Gao, D. Xu, and M.R. Jiang A moving objects detection method based on a combination of improved local binary pattern texture and hue Elec Eng Control 98 2011 261 268
    • (2011) Elec Eng Control , vol.98 , pp. 261-268
    • Yuan, G.W.1    Gao, Y.2    Xu, D.3    Jiang, M.R.4
  • 24
    • 33847712243 scopus 로고    scopus 로고
    • Kernel regression for image processing and reconstruction
    • H. Takeda, S. Farsiu, and P. Milanfar Kernel regression for image processing and reconstruction IEEE Trans Image Process 16 2007 349 366, 200
    • (2007) IEEE Trans Image Process , vol.16 , pp. 349-366
    • Takeda, H.1    Farsiu, S.2    Milanfar, P.3
  • 26
    • 77649273644 scopus 로고    scopus 로고
    • Extraction of moving objects from their background based on multiple adaptive thresholds and boundary evaluation
    • W. Lu, and N.H.C. Yung Extraction of moving objects from their background based on multiple adaptive thresholds and boundary evaluation IEEE Trans Int Trans Syst 11 2010 40 51
    • (2010) IEEE Trans Int Trans Syst , vol.11 , pp. 40-51
    • Lu, W.1    Yung, N.H.C.2
  • 29
    • 45949086871 scopus 로고    scopus 로고
    • A self-organizing approach to background subtraction for visual surveillance applications
    • L. Maddalena, and A. Petrosino A self-organizing approach to background subtraction for visual surveillance applications IEEE Trans Image Process 17 2008 1168 1177
    • (2008) IEEE Trans Image Process , vol.17 , pp. 1168-1177
    • Maddalena, L.1    Petrosino, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.