-
1
-
-
0034339813
-
Classical skew orthogonal polynomials and random matrices
-
MR1762659
-
ADLER, M., FORRESTER, P. J., NAGAO, T. and VAN MOERBEKE, P. (2000). Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99 141-170. MR1762659
-
(2000)
J. Stat. Phys.
, vol.99
, pp. 141-170
-
-
Adler, M.1
Forrester, P.J.2
Nagao, T.3
Van Moerbeke, P.4
-
2
-
-
79952698510
-
An introduction to random matrices
-
Cambridge Univ. Press, Cambridge. MR2760897
-
ANDERSON, G. W., GUIONNET, A. and ZEITOUNI, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge. MR2760897
-
(2010)
Cambridge Studies in Advanced Mathematics
, vol.118
-
-
Anderson, G.W.1
Guionnet, A.2
Zeitouni, O.3
-
3
-
-
79953747130
-
On the numerical evaluation of distributions in random matrix theory: A review
-
BORNEMANN, F. (2010). On the numerical evaluation of distributions in random matrix theory: A review. Markov Process. Related Field 16 803-866.
-
(2010)
Markov Process. Related Field
, vol.16
, pp. 803-866
-
-
Bornemann, F.1
-
4
-
-
33746874136
-
Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE
-
MR2233711
-
CHOUP, L. N. (2006). Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE. Int. Math. Res. Not. Art. ID 61049, 32. MR2233711
-
(2006)
Int. Math. Res. Not. Art. ID 61049
, pp. 32
-
-
Choup, L.N.1
-
5
-
-
41549122856
-
Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited
-
MR2406805, 16
-
CHOUP, L. N. (2008). Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited. J. Math. Phys. 49 033508, 16. MR2406805
-
(2008)
J. Math. Phys.
, vol.49
, pp. 033508
-
-
Choup, L.N.1
-
6
-
-
59349103132
-
Edgeworth expansion of the largest eigenvalue distribution function of Gaussian orthogonal ensemble
-
MR2492622, 22
-
CHOUP, L. N. (2009). Edgeworth expansion of the largest eigenvalue distribution function of Gaussian orthogonal ensemble. J. Math. Phys. 50 013512, 22. MR2492622
-
(2009)
J. Math. Phys.
, vol.50
, pp. 013512
-
-
Choup, L.N.1
-
7
-
-
33947507043
-
A rate of convergence result for the largest eigenvalue of complex white Wishart matrices
-
MR2294977
-
EL KAROUI, N. (2006). A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. Ann. Probab. 34 2077-2117. MR2294977
-
(2006)
Ann. Probab.
, vol.34
, pp. 2077-2117
-
-
Karoui, E.L.N.1
-
8
-
-
61349193752
-
A method to calculate correlation functions for ? = 1 random matrices of odd size
-
MR2485724
-
FORRESTER, P. J. and MAYS, A. (2009). A method to calculate correlation functions for ? = 1 random matrices of odd size. J. Stat. Phys. 134 443-462. MR2485724
-
(2009)
J. Stat. Phys.
, vol.134
, pp. 443-462
-
-
Forrester, P.J.1
Mays, A.2
-
9
-
-
62349134314
-
Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence
-
MR2485010
-
JOHNSTONE, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Statist. 36 2638-2716. MR2485010
-
(2008)
Ann. Statist.
, vol.36
, pp. 2638-2716
-
-
Johnstone, I.M.1
-
10
-
-
62349094530
-
Approximate null distribution of the largest root in multivariate analysis
-
MR2752150
-
JOHNSTONE, I. M. (2009). Approximate null distribution of the largest root in multivariate analysis. Ann. Appl. Stat. 3 1616-1633. MR2752150
-
(2009)
Ann. Appl. Stat.
, vol.3
, pp. 1616-1633
-
-
Johnstone, I.M.1
-
11
-
-
84856617276
-
Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices
-
MA, Z. (2012). Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices. Bernoulli 18 322-359.
-
(2012)
Bernoulli
, vol.18
, pp. 322-359
-
-
Ma, Z.1
-
13
-
-
59449098080
-
Universality results for the largest eigenvalues of some sample covariance matrix ensembles
-
MR2475670
-
PÉCHÉ, S. (2009). Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields 143 481-516. MR2475670
-
(2009)
Probab. Theory Related Fields
, vol.143
, pp. 481-516
-
-
Péché, S.1
-
14
-
-
0016801388
-
An inequality among determinants
-
MR0433247
-
SEILER, E. and SIMON, B. (1975). An inequality among determinants. Proc. Natl. Acad. Sci. USA 72 3277-3278. MR0433247
-
(1975)
Proc. Natl. Acad. Sci. USA
, vol.72
, pp. 3277-3278
-
-
Seiler, E.1
Simon, B.2
-
15
-
-
53849102979
-
A globally uniform asymptotic expansion of the Hermite polynomials
-
MR2462927
-
SHI, W. (2008). A globally uniform asymptotic expansion of the Hermite polynomials. Acta Math. Sci. Ser. B Engl. Ed. 28 834-842. MR2462927
-
(2008)
Acta Math. Sci. Ser. B Engl. Ed.
, vol.28
, pp. 834-842
-
-
Shi, W.1
-
16
-
-
70349322495
-
Correlation functions for ? = 1 ensembles of matrices of odd size
-
MR2525224
-
SINCLAIR, C. D. (2009). Correlation functions for ? = 1 ensembles of matrices of odd size. J. Stat. Phys. 136 17-33. MR2525224
-
(2009)
J. Stat. Phys.
, vol.136
, pp. 17-33
-
-
Sinclair, C.D.1
-
17
-
-
0141450345
-
A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
-
MR1933444
-
SOSHNIKOV, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 1033-1056. MR1933444
-
(2002)
J. Stat. Phys.
, vol.108
, pp. 1033-1056
-
-
Soshnikov, A.1
-
18
-
-
84879118119
-
Orthogonal Polynomials, 3rd ed
-
Providence, RI. MR0310533
-
SZEG?O, G. (1967). Orthogonal Polynomials, 3rd ed. Amer. Math. Soc., Providence, RI. MR0310533
-
(1967)
Amer. Math. Soc
-
-
Szego, G.1
-
19
-
-
77954624704
-
Random matrices: Universality of local eigenvalue statistics up to the edge
-
MR2669449
-
TAO, T. and VU, V. (2010). Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 549-572. MR2669449
-
(2010)
Comm. Math. Phys.
, vol.298
, pp. 549-572
-
-
Tao, T.1
Vu, V.2
-
20
-
-
27644532196
-
Level-spacing distributions and the Airy kernel
-
MR1257246
-
TRACY, C. A. and WIDOM, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 151-174. MR1257246
-
(1994)
Comm. Math. Phys.
, vol.159
, pp. 151-174
-
-
Tracy, C.A.1
Widom, H.2
-
21
-
-
0030545965
-
On orthogonal and symplectic matrix ensembles
-
MR1385083
-
TRACY, C. A. and WIDOM, H. (1996). On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 727-754. MR1385083
-
(1996)
Comm. Math. Phys.
, vol.177
, pp. 727-754
-
-
Tracy, C.A.1
Widom, H.2
-
22
-
-
0032163852
-
Correlation functions, cluster functions, and spacing distributions for random matrices
-
MR1657844
-
TRACY, C. A. andWIDOM, H. (1998). Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92 809-835. MR1657844
-
(1998)
J. Stat. Phys.
, vol.92
, pp. 809-835
-
-
Tracy, C.A.1
Widom, H.2
-
23
-
-
33745534055
-
Matrix kernels for the Gaussian orthogonal and symplectic ensembles
-
MR2187952
-
TRACY, C. A. andWIDOM, H. (2005). Matrix kernels for the Gaussian orthogonal and symplectic ensembles. Ann. Inst. Fourier (Grenoble) 55 2197-2207. MR2187952
-
(2005)
Ann. Inst. Fourier (Grenoble)
, vol.55
, pp. 2197-2207
-
-
Tracy, C.A.1
Widom, H.2
-
25
-
-
34250872302
-
Global asymptotics of Hermite polynomials via Riemann-Hilbert approach
-
(electronic). MR2291866
-
WONG, R. and ZHANG, L. (2007). Global asymptotics of Hermite polynomials via Riemann-Hilbert approach. Discrete Contin. Dyn. Syst. Ser. B 7 661-682 (electronic). MR2291866
-
(2007)
Discrete Contin. Dyn. Syst. Ser. B
, vol.7
, pp. 661-682
-
-
Wong, R.1
Zhang, L.2
|