-
4
-
-
84870315364
-
Table for upper percentage points of the largest root of a determinantal equation with five roots
-
Available at interstat. statjournals. net
-
Chen, W. W. (2003). Table for upper percentage points of the largest root of a determinantal equation with five roots. InterStat (5). Available at interstat. statjournals. net.
-
(2003)
InterStat
, Issue.5
-
-
Chen, W.W.1
-
5
-
-
84870326283
-
The new table for upper percentage points of the largest root of a determinantal equation with seven roots
-
Available at interstat. statjournals. net
-
Chen, W. W. (2004a). The new table for upper percentage points of the largest root of a determinantal equation with seven roots. InterStat (1). Available at interstat. statjournals. net.
-
(2004)
InterStat
, Issue.1
-
-
Chen, W.W.1
-
6
-
-
84870316376
-
Some new tables for the upper probability points of the largest root of a determinantal equation with seven and eight roots
-
In, (J. Dalton and B. Kilss, eds.)
-
Chen, W. W. (2004b). Some new tables for the upper probability points of the largest root of a determinantal equation with seven and eight roots. In Special Studies in Federal Tax Statistics. Statistics of Income Division, Internal Revenue Service (J. Dalton and B. Kilss, eds.) 113-116.
-
(2004)
Special Studies in Federal Tax Statistics. Statistics of Income Division, Internal Revenue Service
, pp. 113-116
-
-
Chen, W.W.1
-
7
-
-
0001239018
-
Some non-central distribution problems in multivariate analysis
-
Constantine, A. G. (1963). Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 1270-1285.
-
(1963)
Ann. Math. Statist
, vol.34
, pp. 1270-1285
-
-
Constantine, A.G.1
-
8
-
-
56049107137
-
On the marginal distributions of the latent roots of the multivariate beta matrix
-
Davis, A. W. (1972). On the marginal distributions of the latent roots of the multivariate beta matrix. Ann. Math. Statist. 43 1664-1670.
-
(1972)
Ann. Math. Statist
, vol.43
, pp. 1664-1670
-
-
Davis, A.W.1
-
9
-
-
70350274135
-
Upper percentage points of the generalized Beta distribution. II
-
Foster, F. G. (1957). Upper percentage points of the generalized Beta distribution. II. Biometrika 44 441-453.
-
(1957)
Biometrika
, vol.44
, pp. 441-453
-
-
Foster, F.G.1
-
10
-
-
70350257481
-
Upper percentage points of the generalized Beta distribution. III
-
Foster, F. G. (1958). Upper percentage points of the generalized Beta distribution. III. Biometrika 45 492-503.
-
(1958)
Biometrika
, vol.45
, pp. 492-503
-
-
Foster, F.G.1
-
11
-
-
44449149631
-
Upper percentage points of the generalized Beta distribution. I
-
Foster, F. G. and Rees, D. H. (1957). Upper percentage points of the generalized Beta distribution. I. Biometrika 44 237-247.
-
(1957)
Biometrika
, vol.44
, pp. 237-247
-
-
Foster, F.G.1
Rees, D.H.2
-
13
-
-
0141581408
-
Charts of some upper percentage points of the distribution of the largest characteristic root
-
Heck, D. L. (1960). Charts of some upper percentage points of the distribution of the largest characteristic root. Ann. Math. Statist. 31 625-642.
-
(1960)
Ann. Math. Statist
, vol.31
, pp. 625-642
-
-
Heck, D.L.1
-
15
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327.
-
(2001)
Ann. Statist
, vol.29
, pp. 295-327
-
-
Johnstone, I.M.1
-
16
-
-
62349134314
-
Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence
-
Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Statist.36 2638-2716.
-
(2008)
Ann. Statist
, vol.36
, pp. 2638-2716
-
-
Johnstone, I.M.1
-
17
-
-
84870313787
-
Finite sample accuracy of Tracy-Widom approximation for multivariate analysis
-
In, Amer. Statist. Assoc., Alexandria, VA
-
Johnstone, I. M. and Chen, W. W. (2007). Finite sample accuracy of Tracy-Widom approximation for multivariate analysis. In 2007 JSM Proceedings1161-1166. Amer. Statist. Assoc., Alexandria, VA.
-
(2007)
2007 JSM Proceedings
, pp. 1161-1166
-
-
Johnstone, I.M.1
Chen, W.W.2
-
18
-
-
84870348830
-
-
Manuscript in preparation
-
Johnstone, I. M., Ma, Z., Perry, P. O. and Shahram, M. (2010). RMTstat: Distributions, statistics and tests derived from random matrix theory. Manuscript in preparation.
-
(2010)
RMTstat: Distributions, statistics and tests derived from random matrix theory
-
-
Johnstone, I.M.1
Ma, Z.2
Perry, P.O.3
Shahram, M.4
-
20
-
-
33646424751
-
The efficient evaluation of the hypergeometric function of a matrix argument
-
(electronic)
-
Koev, P. and Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp. 75 833-846 (electronic).
-
(2006)
Math. Comp
, vol.75
, pp. 833-846
-
-
Koev, P.1
Edelman, A.2
-
21
-
-
0037914714
-
Computations of some multivariate distributions
-
In, (P. R. Krishnaiah, ed.) North-Holland, Amsterdam
-
Krishnaiah, P. R. (1980). Computations of some multivariate distributions. In Handbook of Statistics, Volume 1-Analysis of Variance (P. R. Krishnaiah, ed.) 745-971. North-Holland, Amsterdam.
-
(1980)
Handbook of Statistics, Volume 1-Analysis of Variance
, pp. 745-971
-
-
Krishnaiah, P.R.1
-
22
-
-
84973809830
-
A Turbo Pascal unit for approximating the cumulative distribution function of Roy's largest root criterion
-
Lutz, J. G. (1992). A Turbo Pascal unit for approximating the cumulative distribution function of Roy's largest root criterion. Educational and Psychological Measurement 52 899-904.
-
(1992)
Educational and Psychological Measurement
, vol.52
, pp. 899-904
-
-
Lutz, J.G.1
-
23
-
-
0034345425
-
Roy table: A program for generating tables of critical values for Roy's largest root criterion
-
Lutz, J. G. (2000). Roy table: A program for generating tables of critical values for Roy's largest root criterion. Educational and Psychological Measurement60 644-647.
-
(2000)
Educational and Psychological Measurement
, vol.60
, pp. 644-647
-
-
Lutz, J.G.1
-
27
-
-
61449117474
-
Distribution of a root of a determinantal equation
-
Nanda, D. N. (1948). Distribution of a root of a determinantal equation. Ann. Math. Statist. 19 47-57.
-
(1948)
Ann. Math. Statist
, vol.19
, pp. 47-57
-
-
Nanda, D.N.1
-
28
-
-
84870317068
-
Probability distribution tables of the largest root of a determinantal equation with two roots
-
Nanda, D. N. (1951). Probability distribution tables of the largest root of a determinantal equation with two roots. J. Indian Soc. Agricultural Statist. 3175-177.
-
(1951)
J. Indian Soc. Agricultural Statist
, pp. 3175-3177
-
-
Nanda, D.N.1
-
29
-
-
59449098080
-
Universality results for largest eigenvalues of some sample covariance matrices ensembles
-
Péché, S. (2009). Universality results for largest eigenvalues of some sample covariance matrices ensembles. Probab. Theory Related Fields 143 481-516.
-
(2009)
Probab. Theory Related Fields
, vol.143
, pp. 481-516
-
-
Péché, S.1
-
30
-
-
0000020001
-
Some new test criteria in multivariate analysis
-
Pillai, K. C. S. (1955). Some new test criteria in multivariate analysis. Ann. Math. Statist. 26 117-121.
-
(1955)
Ann. Math. Statist
, vol.26
, pp. 117-121
-
-
Pillai, K.C.S.1
-
31
-
-
24344459771
-
On the distribution of the largest or smallest root of a matrix in multivariate analysis
-
Pillai, K. C. S. (1956a). On the distribution of the largest or smallest root of a matrix in multivariate analysis. Biometrika 43 122-127.
-
(1956)
Biometrika
, vol.43
, pp. 122-127
-
-
Pillai, K.C.S.1
-
32
-
-
0642285031
-
Some results useful in multivariate analysis
-
Pillai, K. C. S. (1956b). Some results useful in multivariate analysis. Ann. Math. Statist. 27 1106-1114.
-
(1956)
Ann. Math. Statist
, vol.27
, pp. 1106-1114
-
-
Pillai, K.C.S.1
-
33
-
-
0010183359
-
-
The Statistical Center, Univ. of the Philippines, Manila
-
Pillai, K. C. S. (1957). Concise Tables for Statisticians. The Statistical Center, Univ. of the Philippines, Manila.
-
(1957)
Concise Tables for Statisticians
-
-
Pillai, K.C.S.1
-
34
-
-
0002041621
-
On the distribution of the largest characteristic root of a matrix in multivariate analysis
-
Pillai, K. C. S. (1965). On the distribution of the largest characteristic root of a matrix in multivariate analysis. Biometrika 52 405-414.
-
(1965)
Biometrika
, vol.52
, pp. 405-414
-
-
Pillai, K.C.S.1
-
35
-
-
0014098341
-
Upper percentage points of the largest root of a matrix in multivariate analysis
-
Pillai, K. C. S. (1967). Upper percentage points of the largest root of a matrix in multivariate analysis. Biometrika 54 189-194.
-
(1967)
Biometrika
, vol.54
, pp. 189-194
-
-
Pillai, K.C.S.1
-
36
-
-
84870338567
-
On the distribution of the largest of six roots of a matrix in multivariate analysis
-
Pillai, K. C. S. and Bantegui, C. G. (1959). On the distribution of the largest of six roots of a matrix in multivariate analysis. Biometrika 46 237-240.
-
(1959)
Biometrika
, vol.46
, pp. 237-240
-
-
Pillai, K.C.S.1
Bantegui, C.G.2
-
37
-
-
79959335884
-
Percentage points of the largest characteristic root of the multivariate beta matrix
-
Pillai, K. C. S. and Flury, B. N. (1984). Percentage points of the largest characteristic root of the multivariate beta matrix. Commun. Statist. Part A13 2199-2237.
-
(1984)
Commun. Statist. Part A
, vol.13
, pp. 2199-2237
-
-
Pillai, K.C.S.1
Flury, B.N.2
-
39
-
-
0141450345
-
A note on universality of the distribution of the largest eigenvalues in certain classes of sample covariance matrices
-
Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain classes of sample covariance matrices. J. Statist. Phys. 108 1033-1056.
-
(2002)
J. Statist. Phys
, vol.108
, pp. 1033-1056
-
-
Soshnikov, A.1
-
40
-
-
0030545965
-
On orthogonal and symplectic matrix ensembles
-
Tracy, C. A. and Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177 727-754.
-
(1996)
Commun. Math. Phys
, vol.177
, pp. 727-754
-
-
Tracy, C.A.1
Widom, H.2
-
41
-
-
0342758555
-
Regressions between sets of variables
-
Waugh, F. V. (1942). Regressions between sets of variables. Econometrica10 290-310.
-
(1942)
Econometrica
, vol.10
, pp. 290-310
-
-
Waugh, F.V.1
|