메뉴 건너뛰기




Volumn 3, Issue 4, 2009, Pages 1616-1633

Approximate null distribution of the largest root in multivariate analysis

Author keywords

Canonical correlation; Characteristic root; Equality of covariance matrices; Greatest root statistic; Largest eigenvalue; MANOVA; Multivariate linear model; Tracy Widom distribution

Indexed keywords


EID: 62349094530     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/08-AOAS220     Document Type: Article
Times cited : (39)

References (41)
  • 4
    • 84870315364 scopus 로고    scopus 로고
    • Table for upper percentage points of the largest root of a determinantal equation with five roots
    • Available at interstat. statjournals. net
    • Chen, W. W. (2003). Table for upper percentage points of the largest root of a determinantal equation with five roots. InterStat (5). Available at interstat. statjournals. net.
    • (2003) InterStat , Issue.5
    • Chen, W.W.1
  • 5
    • 84870326283 scopus 로고    scopus 로고
    • The new table for upper percentage points of the largest root of a determinantal equation with seven roots
    • Available at interstat. statjournals. net
    • Chen, W. W. (2004a). The new table for upper percentage points of the largest root of a determinantal equation with seven roots. InterStat (1). Available at interstat. statjournals. net.
    • (2004) InterStat , Issue.1
    • Chen, W.W.1
  • 6
    • 84870316376 scopus 로고    scopus 로고
    • Some new tables for the upper probability points of the largest root of a determinantal equation with seven and eight roots
    • In, (J. Dalton and B. Kilss, eds.)
    • Chen, W. W. (2004b). Some new tables for the upper probability points of the largest root of a determinantal equation with seven and eight roots. In Special Studies in Federal Tax Statistics. Statistics of Income Division, Internal Revenue Service (J. Dalton and B. Kilss, eds.) 113-116.
    • (2004) Special Studies in Federal Tax Statistics. Statistics of Income Division, Internal Revenue Service , pp. 113-116
    • Chen, W.W.1
  • 7
    • 0001239018 scopus 로고
    • Some non-central distribution problems in multivariate analysis
    • Constantine, A. G. (1963). Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 1270-1285.
    • (1963) Ann. Math. Statist , vol.34 , pp. 1270-1285
    • Constantine, A.G.1
  • 8
    • 56049107137 scopus 로고
    • On the marginal distributions of the latent roots of the multivariate beta matrix
    • Davis, A. W. (1972). On the marginal distributions of the latent roots of the multivariate beta matrix. Ann. Math. Statist. 43 1664-1670.
    • (1972) Ann. Math. Statist , vol.43 , pp. 1664-1670
    • Davis, A.W.1
  • 9
    • 70350274135 scopus 로고
    • Upper percentage points of the generalized Beta distribution. II
    • Foster, F. G. (1957). Upper percentage points of the generalized Beta distribution. II. Biometrika 44 441-453.
    • (1957) Biometrika , vol.44 , pp. 441-453
    • Foster, F.G.1
  • 10
    • 70350257481 scopus 로고
    • Upper percentage points of the generalized Beta distribution. III
    • Foster, F. G. (1958). Upper percentage points of the generalized Beta distribution. III. Biometrika 45 492-503.
    • (1958) Biometrika , vol.45 , pp. 492-503
    • Foster, F.G.1
  • 11
    • 44449149631 scopus 로고
    • Upper percentage points of the generalized Beta distribution. I
    • Foster, F. G. and Rees, D. H. (1957). Upper percentage points of the generalized Beta distribution. I. Biometrika 44 237-247.
    • (1957) Biometrika , vol.44 , pp. 237-247
    • Foster, F.G.1    Rees, D.H.2
  • 13
    • 0141581408 scopus 로고
    • Charts of some upper percentage points of the distribution of the largest characteristic root
    • Heck, D. L. (1960). Charts of some upper percentage points of the distribution of the largest characteristic root. Ann. Math. Statist. 31 625-642.
    • (1960) Ann. Math. Statist , vol.31 , pp. 625-642
    • Heck, D.L.1
  • 15
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327.
    • (2001) Ann. Statist , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 16
    • 62349134314 scopus 로고    scopus 로고
    • Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence
    • Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Statist.36 2638-2716.
    • (2008) Ann. Statist , vol.36 , pp. 2638-2716
    • Johnstone, I.M.1
  • 17
    • 84870313787 scopus 로고    scopus 로고
    • Finite sample accuracy of Tracy-Widom approximation for multivariate analysis
    • In, Amer. Statist. Assoc., Alexandria, VA
    • Johnstone, I. M. and Chen, W. W. (2007). Finite sample accuracy of Tracy-Widom approximation for multivariate analysis. In 2007 JSM Proceedings1161-1166. Amer. Statist. Assoc., Alexandria, VA.
    • (2007) 2007 JSM Proceedings , pp. 1161-1166
    • Johnstone, I.M.1    Chen, W.W.2
  • 20
    • 33646424751 scopus 로고    scopus 로고
    • The efficient evaluation of the hypergeometric function of a matrix argument
    • (electronic)
    • Koev, P. and Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp. 75 833-846 (electronic).
    • (2006) Math. Comp , vol.75 , pp. 833-846
    • Koev, P.1    Edelman, A.2
  • 21
    • 0037914714 scopus 로고
    • Computations of some multivariate distributions
    • In, (P. R. Krishnaiah, ed.) North-Holland, Amsterdam
    • Krishnaiah, P. R. (1980). Computations of some multivariate distributions. In Handbook of Statistics, Volume 1-Analysis of Variance (P. R. Krishnaiah, ed.) 745-971. North-Holland, Amsterdam.
    • (1980) Handbook of Statistics, Volume 1-Analysis of Variance , pp. 745-971
    • Krishnaiah, P.R.1
  • 22
    • 84973809830 scopus 로고
    • A Turbo Pascal unit for approximating the cumulative distribution function of Roy's largest root criterion
    • Lutz, J. G. (1992). A Turbo Pascal unit for approximating the cumulative distribution function of Roy's largest root criterion. Educational and Psychological Measurement 52 899-904.
    • (1992) Educational and Psychological Measurement , vol.52 , pp. 899-904
    • Lutz, J.G.1
  • 23
    • 0034345425 scopus 로고    scopus 로고
    • Roy table: A program for generating tables of critical values for Roy's largest root criterion
    • Lutz, J. G. (2000). Roy table: A program for generating tables of critical values for Roy's largest root criterion. Educational and Psychological Measurement60 644-647.
    • (2000) Educational and Psychological Measurement , vol.60 , pp. 644-647
    • Lutz, J.G.1
  • 27
    • 61449117474 scopus 로고
    • Distribution of a root of a determinantal equation
    • Nanda, D. N. (1948). Distribution of a root of a determinantal equation. Ann. Math. Statist. 19 47-57.
    • (1948) Ann. Math. Statist , vol.19 , pp. 47-57
    • Nanda, D.N.1
  • 28
    • 84870317068 scopus 로고
    • Probability distribution tables of the largest root of a determinantal equation with two roots
    • Nanda, D. N. (1951). Probability distribution tables of the largest root of a determinantal equation with two roots. J. Indian Soc. Agricultural Statist. 3175-177.
    • (1951) J. Indian Soc. Agricultural Statist , pp. 3175-3177
    • Nanda, D.N.1
  • 29
    • 59449098080 scopus 로고    scopus 로고
    • Universality results for largest eigenvalues of some sample covariance matrices ensembles
    • Péché, S. (2009). Universality results for largest eigenvalues of some sample covariance matrices ensembles. Probab. Theory Related Fields 143 481-516.
    • (2009) Probab. Theory Related Fields , vol.143 , pp. 481-516
    • Péché, S.1
  • 30
    • 0000020001 scopus 로고
    • Some new test criteria in multivariate analysis
    • Pillai, K. C. S. (1955). Some new test criteria in multivariate analysis. Ann. Math. Statist. 26 117-121.
    • (1955) Ann. Math. Statist , vol.26 , pp. 117-121
    • Pillai, K.C.S.1
  • 31
    • 24344459771 scopus 로고
    • On the distribution of the largest or smallest root of a matrix in multivariate analysis
    • Pillai, K. C. S. (1956a). On the distribution of the largest or smallest root of a matrix in multivariate analysis. Biometrika 43 122-127.
    • (1956) Biometrika , vol.43 , pp. 122-127
    • Pillai, K.C.S.1
  • 32
    • 0642285031 scopus 로고
    • Some results useful in multivariate analysis
    • Pillai, K. C. S. (1956b). Some results useful in multivariate analysis. Ann. Math. Statist. 27 1106-1114.
    • (1956) Ann. Math. Statist , vol.27 , pp. 1106-1114
    • Pillai, K.C.S.1
  • 33
    • 0010183359 scopus 로고
    • The Statistical Center, Univ. of the Philippines, Manila
    • Pillai, K. C. S. (1957). Concise Tables for Statisticians. The Statistical Center, Univ. of the Philippines, Manila.
    • (1957) Concise Tables for Statisticians
    • Pillai, K.C.S.1
  • 34
    • 0002041621 scopus 로고
    • On the distribution of the largest characteristic root of a matrix in multivariate analysis
    • Pillai, K. C. S. (1965). On the distribution of the largest characteristic root of a matrix in multivariate analysis. Biometrika 52 405-414.
    • (1965) Biometrika , vol.52 , pp. 405-414
    • Pillai, K.C.S.1
  • 35
    • 0014098341 scopus 로고
    • Upper percentage points of the largest root of a matrix in multivariate analysis
    • Pillai, K. C. S. (1967). Upper percentage points of the largest root of a matrix in multivariate analysis. Biometrika 54 189-194.
    • (1967) Biometrika , vol.54 , pp. 189-194
    • Pillai, K.C.S.1
  • 36
    • 84870338567 scopus 로고
    • On the distribution of the largest of six roots of a matrix in multivariate analysis
    • Pillai, K. C. S. and Bantegui, C. G. (1959). On the distribution of the largest of six roots of a matrix in multivariate analysis. Biometrika 46 237-240.
    • (1959) Biometrika , vol.46 , pp. 237-240
    • Pillai, K.C.S.1    Bantegui, C.G.2
  • 37
    • 79959335884 scopus 로고
    • Percentage points of the largest characteristic root of the multivariate beta matrix
    • Pillai, K. C. S. and Flury, B. N. (1984). Percentage points of the largest characteristic root of the multivariate beta matrix. Commun. Statist. Part A13 2199-2237.
    • (1984) Commun. Statist. Part A , vol.13 , pp. 2199-2237
    • Pillai, K.C.S.1    Flury, B.N.2
  • 39
    • 0141450345 scopus 로고    scopus 로고
    • A note on universality of the distribution of the largest eigenvalues in certain classes of sample covariance matrices
    • Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain classes of sample covariance matrices. J. Statist. Phys. 108 1033-1056.
    • (2002) J. Statist. Phys , vol.108 , pp. 1033-1056
    • Soshnikov, A.1
  • 40
    • 0030545965 scopus 로고    scopus 로고
    • On orthogonal and symplectic matrix ensembles
    • Tracy, C. A. and Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177 727-754.
    • (1996) Commun. Math. Phys , vol.177 , pp. 727-754
    • Tracy, C.A.1    Widom, H.2
  • 41
    • 0342758555 scopus 로고
    • Regressions between sets of variables
    • Waugh, F. V. (1942). Regressions between sets of variables. Econometrica10 290-310.
    • (1942) Econometrica , vol.10 , pp. 290-310
    • Waugh, F.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.