-
1
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluids
-
10.1063/1.3245330
-
Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312
-
(2009)
J Appl Phys
, vol.106
, pp. 094312
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
McKrell, T.4
Townsend, J.5
-
4
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
DOI 10.1115/1.1571080
-
Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567-574 (Pubitemid 37078524)
-
(2003)
Journal of Heat Transfer
, vol.125
, Issue.4
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
5
-
-
4344586905
-
Thermal transport in nanofluids
-
10.1146/annurev.matsci.34.052803.090621 10.1146/annurev.matsci.34.052803. 090621
-
Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:21946. doi: 10.1146/annurev.matsci.34. 052803.090621
-
(2004)
Annu Rev Mater Res
, vol.34
, pp. 21946
-
-
Eastman, J.A.1
Phillpot, S.R.2
Choi, S.U.S.3
Keblinski, P.4
-
6
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
DOI 10.1063/1.1341218
-
Eastman JA, Choi SUS, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 78:6, 718-720 (Pubitemid 33630327)
-
(2001)
Applied Physics Letters
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
7
-
-
0242582398
-
Thermal conductivity of heterogeneous two component systems
-
10.1021/i160003a005 1:CAS:528:DyaF38Xktl2lsrw%3D
-
Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1:187-191
-
(1962)
Ind Eng Chem Fundam
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
8
-
-
18844419456
-
Nanofluids for thermal transport
-
DOI 10.1016/S1369-7021(05)70936-6, PII S1369702105709366
-
Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8:36 (Pubitemid 40690697)
-
(2005)
Materials Today
, vol.8
, Issue.6
, pp. 36-44
-
-
Keblinski, P.1
Eastman, J.A.2
Cahill, D.G.3
-
9
-
-
0035910140
-
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
-
DOI 10.1016/S0017-9310(01)00175-2, PII S0017931001001752
-
Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Trans 45:855863 (Pubitemid 34034421)
-
(2002)
International Journal of Heat and Mass Transfer
, vol.45
, Issue.4
, pp. 855-863
-
-
Keblinski, P.1
Phillpot, S.R.2
Choi, S.U.S.3
Eastman, J.A.4
-
10
-
-
48349098221
-
Thermal conductance of nanofluids: Is the controversy over?
-
10.1007/s11051-007-9352-1
-
Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over?. J Nanopart Res 10:1089-1097
-
(2008)
J Nanopart Res
, vol.10
, pp. 1089-1097
-
-
Keblinski, P.1
Prasher, R.2
Eapen, J.3
-
11
-
-
82655175805
-
Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review
-
10.1186/1556-276X-6-229
-
Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6:229
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 229
-
-
Kleinstreuer, C.1
Feng, Y.2
-
12
-
-
16244411133
-
A new thermal conductivity model for nanofluids
-
DOI 10.1007/s11051-004-3170-5
-
Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577588 (Pubitemid 40454281)
-
(2004)
Journal of Nanoparticle Research
, vol.6
, Issue.6
, pp. 577-588
-
-
Koo, J.1
Kleinstreuer, C.2
-
13
-
-
30344457064
-
Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
-
Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 17(2):35-40 (Pubitemid 43057318)
-
(2005)
Korea Australia Rheology Journal
, vol.17
, Issue.2
, pp. 35-40
-
-
Kwak, K.1
Kim, C.2
-
15
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280-289 (Pubitemid 29419226)
-
(1999)
Journal of Heat Transfer
, vol.121
, Issue.2
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.-S.2
Li, S.3
Eastman, J.A.4
-
18
-
-
77249101566
-
Application of standard and refined heat balance integral methods to one-dimensional stefan problems
-
10.1137/080733036
-
Mitchell SL, Myers TG (2010a) Application of standard and refined heat balance integral methods to one-dimensional stefan problems. SIAM Rev 52(1):5786
-
(2010)
SIAM Rev
, vol.52
, Issue.1
, pp. 5786
-
-
Mitchell, S.L.1
Myers, T.G.2
-
19
-
-
79960715789
-
Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions
-
10.1016/j.ijheatmasstransfer.2010.04.015 10.1016/j.ijheatmasstransfer. 2010.04.015 1:CAS:528:DC%2BC3cXmtFKqs7s%3D
-
Mitchell SL, Myers TG (2010b) Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions. Int J Heat Mass Transf 53(17-18):3540-3551. doi: 10.1016/j.ijheatmasstransfer.2010.04.015
-
(2010)
Int J Heat Mass Transf
, vol.53
, Issue.17-18
, pp. 3540-3551
-
-
Mitchell, S.L.1
Myers, T.G.2
-
20
-
-
50849086452
-
Heat balance integral method for one-dimensional finite ablation
-
10.2514/1.31755 1:CAS:528:DC%2BD1cXovFejtL0%3D
-
Mitchell SL, Myers TG (2008) Heat balance integral method for one-dimensional finite ablation. J Thermophys Heat Transf 22:(3) 508-514
-
(2008)
J Thermophys Heat Transf
, vol.22
, Issue.3
, pp. 508-514
-
-
Mitchell, S.L.1
Myers, T.G.2
-
21
-
-
59649114537
-
Optimizing the exponent in the heat balance and refined integral methods
-
10.1016/j.icheatmasstransfer.2008.10.013 10.1016/j.icheatmasstransfer. 2008.10.013 1:CAS:528:DC%2BD1MXhslCgsr0%3D
-
Myers TG (2009) Optimizing the exponent in the heat balance and refined integral methods. Int Commun Heat Mass Trans 36(2):143-147. doi: 10.1016/j.icheatmasstransfer.2008.10.013
-
(2009)
Int Comm Heat Mass Trans
, vol.36
, Issue.2
, pp. 143-147
-
-
Myers, T.G.1
-
22
-
-
72649083067
-
Optimal exponent heat balance and refined integral methods applied to Stefan problems
-
doi: 10.1016/j.ijheatmasstransfer.2009.10.045
-
Myers TG (2010) Optimal exponent heat balance and refined integral methods applied to Stefan problems. Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2009.10.045
-
(2010)
Int J Heat Mass Trans
-
-
Myers, T.G.1
-
23
-
-
84866369687
-
Thermal properties of nanofluids
-
10.1016/j.cis.2012.08.001
-
Philip J, Shima PD (2012) Thermal properties of nanofluids. Adv Colliod Interface Sci 183:30-45
-
(2012)
Adv Colliod Interface Sci
, vol.183
, pp. 30-45
-
-
Philip, J.1
Shima, P.D.2
-
24
-
-
18144386609
-
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
-
DOI 10.1103/PhysRevLett.94.025901, 025901
-
Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901 (Pubitemid 40620160)
-
(2005)
Physical Review Letters
, vol.94
, Issue.2
, pp. 1-4
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
25
-
-
77955470128
-
The effect of alumina/water nanofluid particle size on thermal conductivity
-
10.1016/j.applthermaleng.2010.05.036 1:CAS:528:DC%2BC3cXptFWqtb8%3D
-
Teng TP, Hung YH, Teng TC, Moa HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:2213-2218
-
(2010)
Appl Therm Eng
, vol.30
, pp. 2213-2218
-
-
Teng, T.P.1
Hung, Y.H.2
Teng, T.C.3
Moa, H.E.4
Hsu, H.G.5
-
26
-
-
34047162914
-
Determination of nanolayer thickness for a nanofluid
-
DOI 10.1016/j.icheatmasstransfer.2007.01.011, PII S0735193307000140
-
Tillman P, Hill JM (2007) Determination of nanolayer thickness for a nanofluid. Int Commun Heat Mass Trans 34:399-407 (Pubitemid 46523611)
-
(2007)
International Communications in Heat and Mass Transfer
, vol.34
, Issue.4
, pp. 399-407
-
-
Tillman, P.1
Hill, J.M.2
-
27
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory
-
10.1103/PhysRevE.76.061203
-
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203
-
(2007)
Phys Rev e
, vol.76
, pp. 061203
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
Sprunt, S.5
Lopatina, L.M.6
Selinger, J.V.7
-
28
-
-
0033339009
-
Thermal conductivity of nanoparticlefluid mixture
-
10.2514/2.6486 1:CAS:528:DyaK1MXntFCltrw%3D
-
Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticlefluid mixture. J Thermophys Heat Transf 13:(4) 474-480
-
(1999)
J Thermophys Heat Transf
, vol.13
, Issue.4
, pp. 474-480
-
-
Wang, X.1
Xu, X.2
Choi, S.U.S.3
-
29
-
-
0037570726
-
A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
-
DOI 10.1016/S0017-9310(03)00016-4
-
Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665-2675 (Pubitemid 36610818)
-
(2003)
International Journal of Heat and Mass Transfer
, vol.46
, Issue.14
, pp. 2665-2672
-
-
Wang, B.-X.1
Zhou, L.-P.2
Peng, X.-F.3
-
30
-
-
0017456140
-
Effective medium theory of optical properties of small particle composites
-
10.1080/14786437708237052
-
Wood DM, Ashcroft NW (1977) Effective medium theory of optical properties of small particle composites. Philos Mag 35(2):269280
-
(1977)
Philos Mag
, vol.35
, Issue.2
, pp. 269280
-
-
Wood, D.M.1
Ashcroft, N.W.2
-
32
-
-
0038082987
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model
-
10.1023/A:1024438603801 1:CAS:528:DC%2BD3sXkvVegtb4%3D
-
Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167-171
-
(2003)
J Nanopart Res
, vol.5
, pp. 167-171
-
-
Yu, W.1
Choi, S.U.S.2
-
33
-
-
8844257274
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model
-
10.1007/s11051-004-2601-7
-
Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. J Nanopart Res 6:355-361
-
(2004)
J Nanopart Res
, vol.6
, pp. 355-361
-
-
Yu, W.1
Choi, S.U.S.2
-
34
-
-
40549118893
-
Measurement of the specific heat capacity of water-based Al2 O3 nanofluid
-
DOI 10.1063/1.2890431
-
3 nanofluid. Appl Phys Lett 92:093123 (Pubitemid 351357436)
-
(2008)
Applied Physics Letters
, vol.92
, Issue.9
, pp. 093123
-
-
Zhou, S.-Q.1
Ni, R.2
|