-
1
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles Appl. Phys. Lett. 2001, 78, 718-720
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
2
-
-
0035473529
-
Anomalous thermal conductivity enhancement in nanotube suspensions
-
DOI 10.1063/1.1408272
-
Choi, S. U. S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A. Anomalous thermal conductivity enhancement in nano tube suspensions Appl. Phys. Lett. 2001, 78, 2252-2254 (Pubitemid 33600817)
-
(2001)
Applied Physics Letters
, vol.79
, Issue.14
, pp. 2252-2254
-
-
Choi, S.U.S.1
Zhang, Z.G.2
Yu, W.3
Lockwood, F.E.4
Grulke, E.A.5
-
3
-
-
18544377641
-
Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
-
Xie, H.; Fujii, M.; Zhang, X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture Int. J. Heat Mass Transfer 2005, 48, 2926-2932
-
(2005)
Int. J. Heat Mass Transfer
, vol.48
, pp. 2926-2932
-
-
Xie, H.1
Fujii, M.2
Zhang, X.3
-
4
-
-
84979113075
-
A new determination of the molecular dimensions
-
Einstein, A. A new determination of the molecular dimensions Ann. Phys. 1906, 19, 289-306
-
(1906)
Ann. Phys.
, vol.19
, pp. 289-306
-
-
Einstein, A.1
-
5
-
-
0012452966
-
The viscosity of concentrated suspensions and solution
-
Brinkman, H. C. The viscosity of concentrated suspensions and solution J. Chem. Phys. 1952, 20, 571
-
(1952)
J. Chem. Phys.
, vol.20
, pp. 571
-
-
Brinkman, H.C.1
-
6
-
-
49949140804
-
On the viscosity of a concentrated suspension of solid spheres
-
Frankel, N. A.; Acrivos, A. On the viscosity of a concentrated suspension of solid spheres Chem. Eng. Sci. 1967, 22, 847-853
-
(1967)
Chem. Eng. Sci.
, vol.22
, pp. 847-853
-
-
Frankel, N.A.1
Acrivos, A.2
-
7
-
-
84974231525
-
Slow flow through stationary random beds and suspensions of spheres
-
Lundgren, T. S. Slow flow through stationary random beds and suspensions of spheres J. Fluid Mech. 1972, 51, 273-299
-
(1972)
J. Fluid Mech.
, vol.51
, pp. 273-299
-
-
Lundgren, T.S.1
-
8
-
-
0017551342
-
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
-
Batchelor, G. K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles J. Fluid Mech. 1977, 83, 97-117
-
(1977)
J. Fluid Mech.
, vol.83
, pp. 97-117
-
-
Batchelor, G.K.1
-
9
-
-
0019662932
-
On the viscosity of suspension of solid spheres
-
Graham, A. L. On the viscosity of suspension of solid spheres Appl. Sci. Res. 1981, 37, 275-286
-
(1981)
Appl. Sci. Res.
, vol.37
, pp. 275-286
-
-
Graham, A.L.1
-
10
-
-
84994728034
-
A new model for calculating the effective viscosity of nanofluids
-
Masoumi, N.; Sohrabi, N.; Behzadmehr, A. A new model for calculating the effective viscosity of nanofluids J. Phys. D: Appl. Phys. 2009, 42 055501
-
(2009)
J. Phys. D: Appl. Phys.
, vol.42
, pp. 055501
-
-
Masoumi, N.1
Sohrabi, N.2
Behzadmehr, A.3
-
11
-
-
36248987328
-
Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon
-
Nguyen, C. T.; Desgranges, F.; Roy, G.; Galanis, N.; Mare, T.; Boucher, S.; Angue Mintsa, H. Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon Int. J. Heat Fluid Flow 2007, 28, 1492-1506
-
(2007)
Int. J. Heat Fluid Flow
, vol.28
, pp. 1492-1506
-
-
Nguyen, C.T.1
Desgranges, F.2
Roy, G.3
Galanis, N.4
Mare, T.5
Boucher, S.6
Angue Mintsa, H.7
-
12
-
-
34247544650
-
Evaluation on dispersion behaviour of the aqueous copper nano-suspensions
-
Li, X.; Zhu, D.; Wang, X. Evaluation on dispersion behaviour of the aqueous copper nano-suspensions J. Colloid Interface Sci. 2007, 310, 456-463
-
(2007)
J. Colloid Interface Sci.
, vol.310
, pp. 456-463
-
-
Li, X.1
Zhu, D.2
Wang, X.3
-
13
-
-
0037162611
-
Origin of long-range attractive force between surfaces hydrophobized by surfactant adsorption
-
DOI 10.1021/la025701j
-
Sakamoto, M.; Kanda, Y.; Miyahara, M.; Higashitani, K. Origin of long-range attractive force between surfaces hydrophobized by surfactant adsorption Langmuir 2002, 18, 5713-5719 (Pubitemid 35383401)
-
(2002)
Langmuir
, vol.18
, Issue.15
, pp. 5713-5719
-
-
Sakamoto, M.1
Kanda, Y.2
Miyahara, M.3
Higashitani, K.4
-
14
-
-
0000681406
-
A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements
-
Kestin, J.; Wakeham, W. A. A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements Physica A 1978, 92, 102-116
-
(1978)
Physica A
, vol.92
, pp. 102-116
-
-
Kestin, J.1
Wakeham, W.A.2
-
15
-
-
0033339009
-
Thermal conductivity of nanoparticle - Fluid mixture
-
Wang, X.; Xu, X.; Choi, S. U. S. Thermal conductivity of nanoparticle-fluid mixture J. Thermophys. Heat Transfer 1999, 13, 474-480
-
(1999)
J. Thermophys. Heat Transfer
, vol.13
, pp. 474-480
-
-
Wang, X.1
Xu, X.2
Choi, S.U.S.3
-
16
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
Das, S. K.; Putta, N.; Thiesen, P.; Roetzel, W. Temperature dependence of thermal conductivity enhancement for nanofluids J. Heat Transfer 2003, 125, 567-574
-
(2003)
J. Heat Transfer
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putta, N.2
Thiesen, P.3
Roetzel, W.4
-
17
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
Li, C. H.; Peterson, G. P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) J. Appl. Phys. 2006, 99, 1-8
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 1-8
-
-
Li, C.H.1
Peterson, G.P.2
-
18
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluid
-
Buongiorno, J.; Venerus, D. C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y. V.; Keblinski, P.; Hu, L.; Alvarado, J. L.; Bang, I. C.; Bishnoi, S. W.; Bonetti, M.; Botz, F.; Cecere, A.; Chang, Y.; Chen, G.; Chen, H.; Chung, S. J.; Chyu, M. K.; Das, S. K.; Paola, R. D.; Ding, Y.; Dubois, F.; Dzido, G.; Eapen, J.; Escher, W.; Funfschilling, D.; Galand, Q.; Gao, J.; Gharagozloo, P. E.; Goodson, K. E.; Gutierrez, J. G.; Hong, H.; Horton, M.; Hwang, K. S.; Iorio, C. S.; Jang, S. P.; Jarzebski, A. B.; Jiang, Y.; Jin, L.; Kabelac, S.; Kamath, A.; Kedzierski, M. A.; Kieng, L. G.; Kim, C.; Kim, J. H.; Kim, S.; Lee, S. H.; Leong, K. C.; Manna, I.; Michel, B.; Ni, R.; Patel, H. E.; Philip, J.; Poulikakos, D.; Reynaud, C.; Savino, R.; Singh, P. K.; Song, P.; Sundararajan, T.; Timofeeva, E.; Tritcak, T.; Turanov, A. N.; Van Vaerenbergh, S.; Wen, D.; Witharana, S.; Yang, C.; Yeh, W. H.; Zhao, X. Z.; Zhou, S. Q. A benchmark study on the thermal conductivity of nanofluid J. Appl. Phys. 2009, 106 094312
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 094312
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
McKrell, T.4
Townsend, J.5
Christianson, R.6
Tolmachev, Y.V.7
Keblinski, P.8
Hu, L.9
Alvarado, J.L.10
Bang, I.C.11
Bishnoi, S.W.12
Bonetti, M.13
Botz, F.14
Cecere, A.15
Chang, Y.16
Chen, G.17
Chen, H.18
Chung, S.J.19
Chyu, M.K.20
Das, S.K.21
Paola, R.D.22
Ding, Y.23
Dubois, F.24
Dzido, G.25
Eapen, J.26
Escher, W.27
Funfschilling, D.28
Galand, Q.29
Gao, J.30
Gharagozloo, P.E.31
Goodson, K.E.32
Gutierrez, J.G.33
Hong, H.34
Horton, M.35
Hwang, K.S.36
Iorio, C.S.37
Jang, S.P.38
Jarzebski, A.B.39
Jiang, Y.40
Jin, L.41
Kabelac, S.42
Kamath, A.43
Kedzierski, M.A.44
Kieng, L.G.45
Kim, C.46
Kim, J.H.47
Kim, S.48
Lee, S.H.49
Leong, K.C.50
Manna, I.51
Michel, B.52
Ni, R.53
Patel, H.E.54
Philip, J.55
Poulikakos, D.56
Reynaud, C.57
Savino, R.58
Singh, P.K.59
Song, P.60
Sundararajan, T.61
Timofeeva, E.62
Tritcak, T.63
Turanov, A.N.64
Van Vaerenbergh, S.65
Wen, D.66
Witharana, S.67
Yang, C.68
Yeh, W.H.69
Zhao, X.Z.70
Zhou, S.Q.71
more..
-
20
-
-
84980703555
-
Calculation of various physics constants in heterogenous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances
-
Bruggeman, D. A. G. Calculation of various physics constants in heterogenous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances Ann. Phys. 1935, 24, 636-664
-
(1935)
Ann. Phys.
, vol.24
, pp. 636-664
-
-
Bruggeman, D.A.G.1
-
21
-
-
0038082987
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model
-
Yu, W.; Choi, S. U. S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model J. Nanopart. Res. 2003, 5, 167-171
-
(2003)
J. Nanopart. Res.
, vol.5
, pp. 167-171
-
-
Yu, W.1
Choi, S.U.S.2
-
23
-
-
2942694254
-
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
-
Jang, S. P.; Choi, S. U. S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids Appl. Phys. Lett. 2004, 84, 4316-4318
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 4316-4318
-
-
Jang, S.P.1
Choi, S.U.S.2
-
24
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
Lee, S.; Choi, S. U. S.; Li, S.; Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles J. Heat Transfer 1999, 121, 280-289
-
(1999)
J. Heat Transfer
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
25
-
-
0007644403
-
Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles
-
Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N. Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles Netsu Bussei 1993, 4, 227-233
-
(1993)
Netsu Bussei
, vol.4
, pp. 227-233
-
-
Masuda, H.1
Ebata, A.2
Teramae, K.3
Hishinuma, N.4
-
26
-
-
67650732997
-
The effect of particle size on the thermal conductivity of alumina nanofluids
-
Beck, M. P.; Yuan, Y.; Warrier, P.; Teja, A. S. The effect of particle size on the thermal conductivity of alumina nanofluids J. Nanopart. Res. 2009, 11, 1129-1136
-
(2009)
J. Nanopart. Res.
, vol.11
, pp. 1129-1136
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
27
-
-
0030449421
-
Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles
-
Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles ASME J. Heat Transfer 1996, 118, 539-545
-
(1996)
ASME J. Heat Transfer
, vol.118
, pp. 539-545
-
-
Chen, G.1
-
29
-
-
41149171667
-
Study for the particle's scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method
-
Lu, W. Q.; Fan, Q. M. Study for the particle's scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method Eng. Anal. Boundary Elem. 2008, 32, 282-289
-
(2008)
Eng. Anal. Boundary Elem.
, vol.32
, pp. 282-289
-
-
Lu, W.Q.1
Fan, Q.M.2
-
30
-
-
18144386609
-
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
-
Prasher, R.; Bhattacharya, P.; Phelan, P. E. Thermal conductivity of nanoscale colloidal solutions (nanofluids) Phys. Rev. Lett. 2005, 94 025901
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 025901
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
31
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory
-
Timofeeva, E. V.; Gavrilov, A. N.; McCloskey, J. M.; Tolmachev, Y. V. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory Phys. Rev. E 2007, 76 061203
-
(2007)
Phys. Rev. E
, vol.76
, pp. 061203
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
-
32
-
-
34547732411
-
Rheological behaviour of ethylene glycol based titania nanofluids
-
Chen, H.; Ding, Y.; He, Y.; Tan, C. Rheological behaviour of ethylene glycol based titania nanofluids Chem. Phys. Lett. 2007, 444, 333-337
-
(2007)
Chem. Phys. Lett.
, vol.444
, pp. 333-337
-
-
Chen, H.1
Ding, Y.2
He, Y.3
Tan, C.4
-
33
-
-
84892289943
-
A mechanism for non-newtonian flow in suspensions of rigid spheres
-
Krieger, I. M.; Dougherty, T. J. A mechanism for non-newtonian flow in suspensions of rigid spheres J. Rheol. 1959, 3, 137-152
-
(1959)
J. Rheol.
, vol.3
, pp. 137-152
-
-
Krieger, I.M.1
Dougherty, T.J.2
-
34
-
-
68449101478
-
Dependence of Nanofluid Viscosity on Particle Size and pH Value
-
Zhao, J. F.; Zhong, Y. L.; Ni, M. J.; Cen, K. F. Dependence of Nanofluid Viscosity on Particle Size and pH Value Chin. Phys. Lett. 2009, 26 066202
-
(2009)
Chin. Phys. Lett.
, vol.26
, pp. 066202
-
-
Zhao, J.F.1
Zhong, Y.L.2
Ni, M.J.3
Cen, K.F.4
|