메뉴 건너뛰기




Volumn 141, Issue , 2013, Pages 212-219

Optimisation and enhancement of biohydrogen production using nickel nanoparticles - A novel approach

Author keywords

Biohydrogen; Central composite design; Nickel nanoparticles; Response surface methodology

Indexed keywords

GLUCOSE; NANOPARTICLES; NICKEL; OPTIMIZATION; SURFACE PROPERTIES;

EID: 84879003408     PISSN: 09608524     EISSN: 18732976     Source Type: Journal    
DOI: 10.1016/j.biortech.2013.03.082     Document Type: Article
Times cited : (172)

References (35)
  • 1
    • 63849167764 scopus 로고    scopus 로고
    • Effect of environmental parameters on hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564)
    • Alalayah W.M., Kalil M.S., Kadhum A.A.H., Jahim J.M., Alauj N.M. Effect of environmental parameters on hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Am. J. Environ. Sci. 2009, 5:80-86.
    • (2009) Am. J. Environ. Sci. , vol.5 , pp. 80-86
    • Alalayah, W.M.1    Kalil, M.S.2    Kadhum, A.A.H.3    Jahim, J.M.4    Alauj, N.M.5
  • 2
    • 0003425384 scopus 로고
    • APHA Standard Methods for the Examination of Waste and Wastewater
    • American Public Health Associations, New York
    • APHA Standard Methods for the Examination of Waste and Wastewater 1995, American Public Health Associations, New York. sixteenth ed.
    • (1995)
  • 3
    • 80051617568 scopus 로고    scopus 로고
    • Nanoparticles for hydrogen generation
    • Buckner C.E., Smith M.J. Nanoparticles for hydrogen generation. J. Mater. Chem. 2011, 21:12173-12180.
    • (2011) J. Mater. Chem. , vol.21 , pp. 12173-12180
    • Buckner, C.E.1    Smith, M.J.2
  • 5
    • 77956200366 scopus 로고    scopus 로고
    • Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect
    • Cheng R., Zhou W., Wang J., Qi D., Guo L., Zhang W.X., Qian Y. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J. Hazard. Mater. 2010, 180:79-85.
    • (2010) J. Hazard. Mater. , vol.180 , pp. 79-85
    • Cheng, R.1    Zhou, W.2    Wang, J.3    Qi, D.4    Guo, L.5    Zhang, W.X.6    Qian, Y.7
  • 6
    • 33751000746 scopus 로고    scopus 로고
    • Kinetic study of biological hydrogen production by anaerobic fermentation
    • Chen W.H., Chen S.Y., Khanal S.K., Sung S. Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrogen Energy 2006, 31:2170-2178.
    • (2006) Int. J. Hydrogen Energy , vol.31 , pp. 2170-2178
    • Chen, W.H.1    Chen, S.Y.2    Khanal, S.K.3    Sung, S.4
  • 8
    • 0343462148 scopus 로고    scopus 로고
    • Hydrogen production by biological processes: a literature review
    • Das D., Veziroglu T.N. Hydrogen production by biological processes: a literature review. Int. J. Hydrogen Energy 2001, 26:13-28.
    • (2001) Int. J. Hydrogen Energy , vol.26 , pp. 13-28
    • Das, D.1    Veziroglu, T.N.2
  • 9
    • 55549110752 scopus 로고    scopus 로고
    • Optimisation of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology
    • Guo W.Q., Ren N.Q., Wang X.J., Xiang W.S., Ding J., You Y., Liu B.F. Optimisation of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresour. Technol. 2009, 100:1192-1196.
    • (2009) Bioresour. Technol. , vol.100 , pp. 1192-1196
    • Guo, W.Q.1    Ren, N.Q.2    Wang, X.J.3    Xiang, W.S.4    Ding, J.5    You, Y.6    Liu, B.F.7
  • 10
    • 79960840835 scopus 로고    scopus 로고
    • Enhancement effect of hematite nanoparticles on fermentative hydrogen production
    • Han H., Cui M., Wei L., Yang H., Shen J. Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour. Technol. 2011, 102:7903-7909.
    • (2011) Bioresour. Technol. , vol.102 , pp. 7903-7909
    • Han, H.1    Cui, M.2    Wei, L.3    Yang, H.4    Shen, J.5
  • 11
    • 77956974902 scopus 로고    scopus 로고
    • Bio-hydrogen production potential from market waste
    • Jaitalee L., Dararat S., Chavalparit O. Bio-hydrogen production potential from market waste. Environ. Asia 2010, 3:115-122.
    • (2010) Environ. Asia , vol.3 , pp. 115-122
    • Jaitalee, L.1    Dararat, S.2    Chavalparit, O.3
  • 12
    • 2342472020 scopus 로고    scopus 로고
    • Biological hydrogen production, effects of pH and intermediate products
    • Khanal S.K., Chen W.H., Li L. Biological hydrogen production, effects of pH and intermediate products. Int. J. Hydrogen Energy 2004, 29:1123-1131.
    • (2004) Int. J. Hydrogen Energy , vol.29 , pp. 1123-1131
    • Khanal, S.K.1    Chen, W.H.2    Li, L.3
  • 13
    • 84857209306 scopus 로고    scopus 로고
    • Fermentative hydrogen production - an alternative clean energy source
    • Kothari R., Singh D.P., Tyagi V.V., Tyagi S.K. Fermentative hydrogen production - an alternative clean energy source. Renew. Sust. Energ. Rev. 2012, 16:2337-2346.
    • (2012) Renew. Sust. Energ. Rev. , vol.16 , pp. 2337-2346
    • Kothari, R.1    Singh, D.P.2    Tyagi, V.V.3    Tyagi, S.K.4
  • 14
    • 40749136908 scopus 로고    scopus 로고
    • Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora
    • Lee K.S., Hsu Y.F., Lo Y.C., Lin P.J., Lind C.Y., Chang J.S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int. J. Hydrogen Energy 2008, 33:1565-1572.
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 1565-1572
    • Lee, K.S.1    Hsu, Y.F.2    Lo, Y.C.3    Lin, P.J.4    Lind, C.Y.5    Chang, J.S.6
  • 15
    • 0344896607 scopus 로고    scopus 로고
    • Biohydrogen production: prospects and limitations to practical applications
    • Levin D.B., Pitt L., Love M. Biohydrogen production: prospects and limitations to practical applications. Int. J. Hydrogen Energy 2004, 29:173-185.
    • (2004) Int. J. Hydrogen Energy , vol.29 , pp. 173-185
    • Levin, D.B.1    Pitt, L.2    Love, M.3
  • 16
    • 33344465759 scopus 로고    scopus 로고
    • Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora
    • Lin C.Y., Lee C.Y., Tseng L.C., Shiao I.Z. Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora. Process Biochem. 2006, 41:915-919.
    • (2006) Process Biochem. , vol.41 , pp. 915-919
    • Lin, C.Y.1    Lee, C.Y.2    Tseng, L.C.3    Shiao, I.Z.4
  • 17
    • 79960821591 scopus 로고    scopus 로고
    • Optimisation of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement
    • Liu Q., Zhang X., Zhou Y., Zhao A., Chen S., Qian G., Xu Z.P. Optimisation of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement. Bioresour. Technol. 2011, 102:8661-8668.
    • (2011) Bioresour. Technol. , vol.102 , pp. 8661-8668
    • Liu, Q.1    Zhang, X.2    Zhou, Y.3    Zhao, A.4    Chen, S.5    Qian, G.6    Xu, Z.P.7
  • 18
    • 33747333106 scopus 로고
    • Use of dinitro salicylic acid reagent for reducing sugar
    • Miller G.L. Use of dinitro salicylic acid reagent for reducing sugar. Anal. Chem. 1959, 31:426-428.
    • (1959) Anal. Chem. , vol.31 , pp. 426-428
    • Miller, G.L.1
  • 22
    • 33645236873 scopus 로고    scopus 로고
    • Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures
    • Mu Y., Wang G., Yu H.Q. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb. Technol. 2006, 38:905-913.
    • (2006) Enzyme Microb. Technol. , vol.38 , pp. 905-913
    • Mu, Y.1    Wang, G.2    Yu, H.Q.3
  • 23
    • 79953064822 scopus 로고    scopus 로고
    • Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor
    • Mullai P., Arulselvi S., Ngo H.H., Sabarathinam P.L. Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor. Bioresour. Technol. 2011, 102:5492-5497.
    • (2011) Bioresour. Technol. , vol.102 , pp. 5492-5497
    • Mullai, P.1    Arulselvi, S.2    Ngo, H.H.3    Sabarathinam, P.L.4
  • 24
    • 79952713503 scopus 로고    scopus 로고
    • Statistical analysis of main and interaction effects to optimize xylanase production under submerged cultivation conditions
    • Mullai P., Fathima N.S.A., Eldon R.R. Statistical analysis of main and interaction effects to optimize xylanase production under submerged cultivation conditions. J. Agric. Sci. 2010, 2:144-153.
    • (2010) J. Agric. Sci. , vol.2 , pp. 144-153
    • Mullai, P.1    Fathima, N.S.A.2    Eldon, R.R.3
  • 25
    • 38849158671 scopus 로고    scopus 로고
    • Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2
    • Pan C.M., Fan Y.T., Xing Y., Hou H.W., Zhang M.L. Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresour. Technol. 2008, 99:3146-3154.
    • (2008) Bioresour. Technol. , vol.99 , pp. 3146-3154
    • Pan, C.M.1    Fan, Y.T.2    Xing, Y.3    Hou, H.W.4    Zhang, M.L.5
  • 26
    • 77950338638 scopus 로고    scopus 로고
    • Biohydrogen production process optimisation using anaerobic mixed consortia: a prelude study for use of agro-industrial material hydrolysate as substrate
    • Prakasham R.S., Sathish T., Brahmaiah P. Biohydrogen production process optimisation using anaerobic mixed consortia: a prelude study for use of agro-industrial material hydrolysate as substrate. Bioresour. Technol. 2010, 101:5708-5711.
    • (2010) Bioresour. Technol. , vol.101 , pp. 5708-5711
    • Prakasham, R.S.1    Sathish, T.2    Brahmaiah, P.3
  • 27
    • 2942577499 scopus 로고    scopus 로고
    • Applications of nanoparticles in biology and medicine - review
    • Salata O.V. Applications of nanoparticles in biology and medicine - review. J. Nanobiotechnol. 2004, 2:3.
    • (2004) J. Nanobiotechnol. , vol.2 , pp. 3
    • Salata, O.V.1
  • 29
    • 34047176503 scopus 로고    scopus 로고
    • Catalytic behavior of nickel nanoparticles stabilized by lower alkyl ammonium bromide in aqueous medium
    • Singla M.L., Negi A., Mahajan V., Singh K.C., Jain D.V.S. Catalytic behavior of nickel nanoparticles stabilized by lower alkyl ammonium bromide in aqueous medium. Appl. Catal. A 2007, 323:51-57.
    • (2007) Appl. Catal. A , vol.323 , pp. 51-57
    • Singla, M.L.1    Negi, A.2    Mahajan, V.3    Singh, K.C.4    Jain, D.V.S.5
  • 30
    • 84878996461 scopus 로고    scopus 로고
    • Biohydrogen production using hybrid upflow anaerobic sludge blanket reactor (HUASBR), M Tech Dissertation, Annamalai University, India
    • Sudha, K., 2009. Biohydrogen production using hybrid upflow anaerobic sludge blanket reactor (HUASBR), M Tech Dissertation, Annamalai University, India, pp. 98.
    • (2009) , pp. 98
    • Sudha, K.1
  • 31
    • 24944574228 scopus 로고    scopus 로고
    • Biohydrogen gas production from food processing and domestic wastewaters
    • Van Ginkel S.W., Oh S.E., Logan B.E. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 2005, 30:1535-1542.
    • (2005) Int. J. Hydrogen Energy , vol.30 , pp. 1535-1542
    • Van Ginkel, S.W.1    Oh, S.E.2    Logan, B.E.3
  • 32
    • 34848880157 scopus 로고    scopus 로고
    • Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate
    • Venkatamohan S., Lalit Babu V., Sarma P.N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour. Technol. 2008, 99:59-67.
    • (2008) Bioresour. Technol. , vol.99 , pp. 59-67
    • Venkatamohan, S.1    Lalit Babu, V.2    Sarma, P.N.3
  • 33
    • 50349086619 scopus 로고    scopus 로고
    • 2+ concentration on biohydrogen production
    • 2+ concentration on biohydrogen production. Bioresour. Technol. 2008, 99:8864-8868.
    • (2008) Bioresour. Technol. , vol.99 , pp. 8864-8868
    • Wang, J.1    Wan, W.2
  • 34
    • 56749183627 scopus 로고    scopus 로고
    • Optimisation of fermentative hydrogen production process by response surface methodology
    • Wang J., Wan W. Optimisation of fermentative hydrogen production process by response surface methodology. Int. J. Hydrogen Energy 2008, 33:6976-6984.
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 6976-6984
    • Wang, J.1    Wan, W.2
  • 35
    • 33846229146 scopus 로고    scopus 로고
    • Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater
    • Zhang Y., Shen J. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int. J. Hydrogen Energy 2007, 32:17-23.
    • (2007) Int. J. Hydrogen Energy , vol.32 , pp. 17-23
    • Zhang, Y.1    Shen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.