메뉴 건너뛰기




Volumn 83, Issue 6, 2013, Pages 1020-1036

Knot selection for least-squares and penalized splines

Author keywords

blind random search; generalized cross validation; genetic algorithm; golden section; parallel computing

Indexed keywords


EID: 84878966411     PISSN: 00949655     EISSN: 15635163     Source Type: Journal    
DOI: 10.1080/00949655.2011.647317     Document Type: Article
Times cited : (49)

References (40)
  • 1
    • 0016030726 scopus 로고
    • Spline functions in data analysis
    • doi:10.1080/00401706.1974.10489142
    • Wold, S. 1974. Spline functions in data analysis. Technometrics, 16: 1 - 11. (doi:10.1080/00401706.1974.10489142)
    • (1974) Technometrics , vol.16 , pp. 1-11
    • Wold, S.1
  • 2
    • 84889660302 scopus 로고
    • Splines as a useful and convenient statistical tool
    • Smith, P. 1979. Splines as a useful and convenient statistical tool. Am. Statist., 33: 57 - 62.
    • (1979) Am. Statist. , vol.33 , pp. 57-62
    • Smith, P.1
  • 3
    • 0001409208 scopus 로고
    • The 'Lethargy' Theorem-A property of approximation by γ-polynomials
    • doi:10.1016/0021-9045(75)90056-8
    • Jupp, D. 1975. The 'Lethargy' Theorem-A property of approximation by γ-polynomials. J. Approx. Theory, 14: 204 - 217. (doi:10.1016/0021-9045(75)90056-8)
    • (1975) J. Approx. Theory , vol.14 , pp. 204-217
    • Jupp, D.1
  • 4
    • 33747818869 scopus 로고
    • Approximation to data by splines with free knots
    • doi:10.1137/0715022
    • Jupp, D. 1978. Approximation to data by splines with free knots. SIAM J. Numer. Anal., 15: 328 - 343. (doi:10.1137/0715022)
    • (1978) SIAM J. Numer. Anal. , vol.15 , pp. 328-343
    • Jupp, D.1
  • 6
    • 21344494352 scopus 로고
    • An algorithm for data reduction using splines with free knots
    • doi:10.1093/imanum/13.3.365
    • Hu, Y. 1993. An algorithm for data reduction using splines with free knots. IMA J. Numer. Anal., 13: 365 - 381. (doi:10.1093/imanum/13.3.365)
    • (1993) IMA J. Numer. Anal. , vol.13 , pp. 365-381
    • Hu, Y.1
  • 8
    • 0033432395 scopus 로고    scopus 로고
    • Penalized estimation of free knot splines
    • Lindstrom, M. 1999. Penalized estimation of free knot splines. J. Comput. Graph. Statist., 8: 333 - 352.
    • (1999) J. Comput. Graph. Statist. , vol.8 , pp. 333-352
    • Lindstrom, M.1
  • 9
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • doi:10.1198/106186002853
    • Ruppert, D. 2002. Selecting the number of knots for penalized splines. J. Comput. Graph. Statist., 11: 735 - 757. (doi:10.1198/106186002853)
    • (2002) J. Comput. Graph. Statist. , vol.11 , pp. 735-757
    • Ruppert, D.1
  • 11
    • 0034230126 scopus 로고    scopus 로고
    • Fitting optimal piecewise linear functions using genetic algorithms
    • doi:10.1109/34.865188
    • Pitman, J. and Murthy, C. A. 2000. Fitting optimal piecewise linear functions using genetic algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 22: 701 - 718. (doi:10.1109/34.865188)
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 701-718
    • Pitman, J.1    Murthy, C.A.2
  • 12
    • 0036751405 scopus 로고    scopus 로고
    • Adaptive splines and genetic algorithms
    • doi:10.1198/106186002448
    • Pitman, J. 2002. Adaptive splines and genetic algorithms. J. Comput. Graph. Statist., 11: 615 - 638. (doi:10.1198/106186002448)
    • (2002) J. Comput. Graph. Statist. , vol.11 , pp. 615-638
    • Pitman, J.1
  • 13
    • 0036660782 scopus 로고    scopus 로고
    • Automatic smoothing for discontinuous regression functions
    • Lee, T. 2002a. Automatic smoothing for discontinuous regression functions. Statistica Sinica, 12: 823 - 842.
    • (2002) Statistica Sinica , vol.12 , pp. 823-842
    • Lee, T.1
  • 14
    • 0036374094 scopus 로고    scopus 로고
    • On algorithms for ordinary least squares regression spline fitting: A comparative study
    • doi:10.1080/00949650213743
    • Lee, T. 2002b. On algorithms for ordinary least squares regression spline fitting: A comparative study. J. Statist. Comput. Simul., 72: 647 - 663. (doi:10.1080/00949650213743)
    • (2002) J. Statist. Comput. Simul. , vol.72 , pp. 647-663
    • Lee, T.1
  • 15
    • 84875270694 scopus 로고    scopus 로고
    • Free knot splines and adaptive knot selection
    • Miyata, S. and Shen, X. 2005. Free knot splines and adaptive knot selection. J. Japanese Statist. Soc., 35: 303 - 324.
    • (2005) J. Japanese Statist. Soc. , vol.35 , pp. 303-324
    • Miyata, S.1    Shen, X.2
  • 16
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • doi:10.1016/0304-4076(95)01763-1
    • Smith, M. and Kohn, R. 1996. Nonparametric regression using Bayesian variable selection. J. Econometrics, 75: 317 - 343. (doi:10.1016/0304-4076(95)01763-1)
    • (1996) J. Econometrics , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 17
    • 18244368726 scopus 로고    scopus 로고
    • Automatic Bayesian curve fitting
    • doi:10.1111/1467-9868.00128
    • Denison, D., Mallick, B. and Smith, A. 1998. Automatic Bayesian curve fitting. J. Roy. Statist. Soc. Ser. B, 60: 333 - 350. (doi:10.1111/1467-9868.00128)
    • (1998) J. Roy. Statist. Soc. Ser. B , vol.60 , pp. 333-350
    • Denison, D.1    Mallick, B.2    Smith, A.3
  • 18
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve fitting with free-knot splines
    • doi:10.1093/biomet/88.4.1055
    • DiMatteo, I., Genovese, C. and Kass, R. 2001. Bayesian curve fitting with free-knot splines. Biometrika, 88: 1055 - 1071. (doi:10.1093/biomet/88.4.1055)
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • DiMatteo, I.1    Genovese, C.2    Kass, R.3
  • 19
    • 0037192055 scopus 로고    scopus 로고
    • Bayesian estimation of free knot splines using reversible jumps
    • doi:10.1016/S0167-9473(02)00066-X
    • Lindstrom, M. 2002. Bayesian estimation of free knot splines using reversible jumps. Comput. Statist. Data Anal., 41: 255 - 269. (doi:10.1016/S0167-9473(02)00066-X)
    • (2002) Comput. Statist. Data Anal. , vol.41 , pp. 255-269
    • Lindstrom, M.1
  • 20
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • doi:10.1214/ss/1038425655
    • Eilers, P. and Marx, B. 1996. Flexible smoothing with B-splines and penalties. Statist. Sci., 11: 89 - 121. (doi:10.1214/ss/1038425655)
    • (1996) Statist. Sci. , vol.11 , pp. 89-121
    • Eilers, P.1    Marx, B.2
  • 22
    • 3242876379 scopus 로고    scopus 로고
    • Selection of smoothing parameters in B-spline nonparametric regression models using information criteria
    • doi:10.1007/BF02523388
    • Imoto, S. and Konishi, S. 2003. Selection of smoothing parameters in B-spline nonparametric regression models using information criteria. Ann. Inst. Statist. Math., 55: 671 - 687. (doi:10.1007/BF02523388)
    • (2003) Ann. Inst. Statist. Math. , vol.55 , pp. 671-687
    • Imoto, S.1    Konishi, S.2
  • 23
    • 5444237700 scopus 로고    scopus 로고
    • A note on smoothing parameter selection for penalized splines
    • doi:10.1016/j.jspi.2003.09.023
    • Kauermann, G. 2005. A note on smoothing parameter selection for penalized splines. J. Statist. Plann. Inference, 127: 53 - 69. (doi:10.1016/j.jspi.2003.09.023)
    • (2005) J. Statist. Plann. Inference , vol.127 , pp. 53-69
    • Kauermann, G.1
  • 24
    • 0013017017 scopus 로고
    • Least squares approximation by splines with free knots
    • doi:10.1007/BF01732610
    • Schwetlick, H. and Schöutze, T. 1995. Least squares approximation by splines with free knots. BIT Numer. Math., 35: 361 - 384. (doi:10.1007/BF01732610)
    • (1995) BIT Numer. Math. , vol.35 , pp. 361-384
    • Schwetlick, H.1    Schöutze, T.2
  • 25
    • 47749128841 scopus 로고    scopus 로고
    • On knot placement for penalized spline regression
    • doi:10.1016/j.jkss.2008.01.003
    • Yao, F. and Lee, C. M. 2008. On knot placement for penalized spline regression. J. Korean Statist. Soc., 2: 259 - 267. (doi:10.1016/j.jkss.2008.01.003)
    • (2008) J. Korean Statist. Soc. , vol.2 , pp. 259-267
    • Yao, F.1    Lee, C.M.2
  • 26
    • 0001066856 scopus 로고
    • Asymptotic integrated mean square error using least squares and bias minimizing splines
    • doi:10.1214/aos/1176345203
    • Agarwal, G. and Studden, W. 1980. Asymptotic integrated mean square error using least squares and bias minimizing splines. Ann. Statist., 8: 1307 - 1325. (doi:10.1214/aos/1176345203)
    • (1980) Ann. Statist. , vol.8 , pp. 1307-1325
    • Agarwal, G.1    Studden, W.2
  • 27
    • 69249171674 scopus 로고    scopus 로고
    • Asymptotic properties of penalized spline estimators
    • doi:10.1093/biomet/asp035
    • Claeskens, G., Krivobokova, T. and Opsomer, J. 2009. Asymptotic properties of penalized spline estimators. Biometrika, 96: 529 - 544. (doi:10.1093/biomet/asp035)
    • (2009) Biometrika , vol.96 , pp. 529-544
    • Claeskens, G.1    Krivobokova, T.2    Opsomer, J.3
  • 28
    • 0000803444 scopus 로고
    • The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate
    • doi:10.1137/0710036
    • Golub, G. and Pereyra, V. 1973. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal., 10: 413 - 432. (doi:10.1137/0710036)
    • (1973) SIAM J. Numer. Anal. , vol.10 , pp. 413-432
    • Golub, G.1    Pereyra, V.2
  • 29
    • 0043041595 scopus 로고
    • Hypothesis testing in B-spline regression
    • doi:10.1080/03610918208812251
    • Smith, P. 1982. Hypothesis testing in B-spline regression. Commun. Statist. B: Simul. Comput., 11: 143 - 157. (doi:10.1080/03610918208812251)
    • (1982) Commun. Statist. B: Simul. Comput. , vol.11 , pp. 143-157
    • Smith, P.1
  • 30
    • 0002970891 scopus 로고
    • Smoothing noisy data with spline functions
    • doi:10.1007/BF01389878
    • Hutchinson, M. and de Hoog, F. 1985. Smoothing noisy data with spline functions. Numer. Math., 47: 99 - 106. (doi:10.1007/BF01389878)
    • (1985) Numer. Math. , vol.47 , pp. 99-106
    • Hutchinson, M.1    de Hoog, F.2
  • 31
    • 0019525292 scopus 로고
    • Minimization by random search techniques
    • doi:10.1287/moor.6.1.19
    • Solis, F. and Wets, R. 1981. Minimization by random search techniques. Math. Oper. Res., 6: 19 - 30. (doi:10.1287/moor.6.1.19)
    • (1981) Math. Oper. Res. , vol.6 , pp. 19-30
    • Solis, F.1    Wets, R.2
  • 34
    • 0000997747 scopus 로고
    • Spline smoothing: The equivalent variable kernel method
    • doi:10.1214/aos/1176346710
    • Silverman, B. 1984. Spline smoothing: The equivalent variable kernel method. Ann. Statist., 12: 898 - 916. (doi:10.1214/aos/1176346710)
    • (1984) Ann. Statist. , vol.12 , pp. 898-916
    • Silverman, B.1
  • 35
    • 0036877268 scopus 로고    scopus 로고
    • An object-oriented random-number package with many long streams and substreams
    • doi:10.1287/opre.50.6.1073.358
    • L'Ecuyer, P., Simard, R., Chen, J. and Kelton, W. 2002. An object-oriented random-number package with many long streams and substreams. Oper. Res., 50: 1073 - 1075. (doi:10.1287/opre.50.6.1073.358)
    • (2002) Oper. Res. , vol.50 , pp. 1073-1075
    • L'Ecuyer, P.1    Simard, R.2    Chen, J.3    Kelton, W.4
  • 37
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • doi:10.1214/aos/1176347963
    • Friedman, J. 1991. Multivariate adaptive regression splines. Ann. Statist., 19: 1 - 141. (doi:10.1214/aos/1176347963)
    • (1991) Ann. Statist. , vol.19 , pp. 1-141
    • Friedman, J.1
  • 38
    • 2942618202 scopus 로고    scopus 로고
    • A simple smoothing spline, III
    • doi:10.1007/BF02892058
    • Eubank, R. 2004. A simple smoothing spline, III. Comput. Statist., 19: 227 - 241. (doi:10.1007/BF02892058)
    • (2004) Comput. Statist. , vol.19 , pp. 227-241
    • Eubank, R.1
  • 39
    • 44849098150 scopus 로고    scopus 로고
    • On the asymptotics of penalized splines
    • doi:10.1093/biomet/asn010
    • Li, X. and Ruppert, D. 2008. On the asymptotics of penalized splines. Biometrika, 95: 415 - 436. (doi:10.1093/biomet/asn010)
    • (2008) Biometrika , vol.95 , pp. 415-436
    • Li, X.1    Ruppert, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.