메뉴 건너뛰기




Volumn 495, Issue , 2013, Pages 175-185

A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand

Author keywords

Adaptive neuro fuzzy inference system; Five day biochemical oxygen demand (BOD5); Proper orthogonal decomposition; Reduced order model; Uncertainty analysis

Indexed keywords

ACCURACY ANALYSIS; ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; FIVE-DAY BIOCHEMICAL OXYGEN DEMAND (BOD5); MONTE-CARLO SIMULATIONS; PEARSON CORRELATION COEFFICIENTS; PROPER ORTHOGONAL DECOMPOSITIONS; REDUCED ORDER MODELS; ROOT MEAN SQUARE ERRORS;

EID: 84878898613     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.04.052     Document Type: Article
Times cited : (44)

References (48)
  • 2
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool
    • Aqil M., Kita I., Yano A., Nishiyama S. Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool. J. Environ. Manage. 2007, 85:215-223.
    • (2007) J. Environ. Manage. , vol.85 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 3
    • 0032508893 scopus 로고    scopus 로고
    • Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation-emission fluorescence spectra
    • Beltran J.L., Ferrer R., Guiteras J. Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation-emission fluorescence spectra. Anal. Chim. Acta 1998, 373:311-319.
    • (1998) Anal. Chim. Acta , vol.373 , pp. 311-319
    • Beltran, J.L.1    Ferrer, R.2    Guiteras, J.3
  • 5
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F.J., Chang Y.T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 2006, 29:1-10.
    • (2006) Adv. Water Resour. , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 6
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau K.W., Wu C.L., Li Y.S. Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng. 2005, 10:485-491.
    • (2005) J. Hydrol. Eng. , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 7
    • 33845428421 scopus 로고    scopus 로고
    • Intelligent manipulation and calibration of parameters for hydrological models
    • Chen W., Chau K.W. Intelligent manipulation and calibration of parameters for hydrological models. Int. J. Environ. Pollut. 2006, 28:432-447.
    • (2006) Int. J. Environ. Pollut. , vol.28 , pp. 432-447
    • Chen, W.1    Chau, K.W.2
  • 8
    • 78751651504 scopus 로고    scopus 로고
    • Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
    • Chiang Y.M., Chang L.C., Tsai M.J., Wang Y.F., Chang F.J. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks. Hydrol. Earth Syst. Sci. 2011, 15:185-196.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , pp. 185-196
    • Chiang, Y.M.1    Chang, L.C.2    Tsai, M.J.3    Wang, Y.F.4    Chang, F.J.5
  • 9
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2:267-278.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 10
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230:244-257.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 11
    • 56849087528 scopus 로고    scopus 로고
    • Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand
    • Dogan E., Ates A., Yilmaz E.C., Erem B. Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand. Environ. Prog. Sustain. 2008, 27:439-446.
    • (2008) Environ. Prog. Sustain. , vol.27 , pp. 439-446
    • Dogan, E.1    Ates, A.2    Yilmaz, E.C.3    Erem, B.4
  • 12
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan E., Sengorur B., Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J. Environ. Manage. 2009, 90:1229-1235.
    • (2009) J. Environ. Manage. , vol.90 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 13
    • 84878919280 scopus 로고    scopus 로고
    • Assigning Confidence Intervals to Neural Network Predictions. Technical Report. Division of Infection (St Thomas' Hospital), King's College, London, UK.
    • Dybowski, R., 1997. Assigning Confidence Intervals to Neural Network Predictions. Technical Report. Division of Infection (St Thomas' Hospital), King's College, London, UK.
    • (1997)
    • Dybowski, R.1
  • 14
    • 0000794034 scopus 로고    scopus 로고
    • Assessing the deposition and remobilization behavior of metals between river water and river sediment using partial least squares regression
    • Einax J.W., Kampe O., Truckenbrodt D. Assessing the deposition and remobilization behavior of metals between river water and river sediment using partial least squares regression. Freshwater J. Anal. Chem. 1998, 361:149-154.
    • (1998) Freshwater J. Anal. Chem. , vol.361 , pp. 149-154
    • Einax, J.W.1    Kampe, O.2    Truckenbrodt, D.3
  • 15
    • 0000255034 scopus 로고    scopus 로고
    • Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models
    • Einax J.W., Aulinger A., Tumpling W.V., Prange A. Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models. Freshwater J. Anal. Chem. 1999, 363:655-661.
    • (1999) Freshwater J. Anal. Chem. , vol.363 , pp. 655-661
    • Einax, J.W.1    Aulinger, A.2    Tumpling, W.V.3    Prange, A.4
  • 16
    • 77955287791 scopus 로고    scopus 로고
    • Equation-Free/Galerkin-Free reduced-order modeling of the shallow water equations based on proper orthogonal decomposition
    • Esfahanian V., Ashrafi K. Equation-Free/Galerkin-Free reduced-order modeling of the shallow water equations based on proper orthogonal decomposition. J. Fluid Eng. 2009, 131:1-13.
    • (2009) J. Fluid Eng. , vol.131 , pp. 1-13
    • Esfahanian, V.1    Ashrafi, K.2
  • 17
    • 0027294340 scopus 로고
    • Improving model selection by nonconvergent methods
    • Finnoff W., Hergert F., Zimmermann H.G. Improving model selection by nonconvergent methods. Neural Networks 1993, 6:771-783.
    • (1993) Neural Networks , vol.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 18
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • Hamed M.M., Khalafallah M.G., Hassanien E.A. Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Modell. Softw. 2004, 19:919-928.
    • (2004) Environ. Modell. Softw. , vol.19 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 19
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • Jain A., Indurthy S.K.V.P. Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks. J. Hydrol. Eng. 2003, 8:93-98.
    • (2003) J. Hydrol. Eng. , vol.8 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 20
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transact. Syst. Man Cybernet. 1993, 23:665-685.
    • (1993) IEEE Transact. Syst. Man Cybernet. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 21
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J.S.R., Sun C.T. Neuro-fuzzy modeling and control. Proceed. IEEE 1995, 83:378-406.
    • (1995) Proceed. IEEE , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 22
    • 33847059431 scopus 로고    scopus 로고
    • Support vector machines: an introduction
    • Springer-Verlag, New York, L. Wang (Ed.)
    • Kecman V. Support vector machines: an introduction. Support Vector Machines: Theory and Applications 2005, Springer-Verlag, New York. L. Wang (Ed.).
    • (2005) Support Vector Machines: Theory and Applications
    • Kecman, V.1
  • 23
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neurofuzzy computing technique for evapotranspiration estimation
    • Kisi O., Ozturk O. Adaptive neurofuzzy computing technique for evapotranspiration estimation. J. Irrig. Drain. E (ASCE) 2007, 133:368-379.
    • (2007) J. Irrig. Drain. E (ASCE) , vol.133 , pp. 368-379
    • Kisi, O.1    Ozturk, O.2
  • 24
    • 23044512802 scopus 로고    scopus 로고
    • A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact
    • Marce R., Comerma M., Garcia J.C., Armengol J. A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnol. Oceanogr.-Meth. 2004, 2:342-355.
    • (2004) Limnol. Oceanogr.-Meth. , vol.2 , pp. 342-355
    • Marce, R.1    Comerma, M.2    Garcia, J.C.3    Armengol, J.4
  • 26
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques
    • Moghaddamnia A., Ghafari Gousheh M., Piri J., Amin S., Han D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour. 2009, 32:88-97.
    • (2009) Adv. Water Resour. , vol.32 , pp. 88-97
    • Moghaddamnia, A.1    Ghafari Gousheh, M.2    Piri, J.3    Amin, S.4    Han, D.5
  • 29
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori R., Karbassi A.R., Moghaddamnia A., Han D., Zokaei-Ashtiani M.H., Farokhnia A., Ghafari-Gousheh M. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401:177-189.
    • (2011) J. Hydrol. , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Ghafari-Gousheh, M.7
  • 30
    • 0036805465 scopus 로고    scopus 로고
    • Simulation of an industrial wastewater treatment plant using artificial neural networks and principal component analysis
    • Oliveira-Esquerre K.P., Mori M., Bruns R.E. Simulation of an industrial wastewater treatment plant using artificial neural networks and principal component analysis. Braz. J. Chem. Eng. 2002, 19:365-370.
    • (2002) Braz. J. Chem. Eng. , vol.19 , pp. 365-370
    • Oliveira-Esquerre, K.P.1    Mori, M.2    Bruns, R.E.3
  • 31
    • 8844285307 scopus 로고    scopus 로고
    • Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill Part I. Linear approaches
    • Oliveira-Esquerre K.P., Seborg D.E., Bruns R.E., Mori M. Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill Part I. Linear approaches. Chem. Eng. J. 2004, 104:73-81.
    • (2004) Chem. Eng. J. , vol.104 , pp. 73-81
    • Oliveira-Esquerre, K.P.1    Seborg, D.E.2    Bruns, R.E.3    Mori, M.4
  • 32
    • 9344240409 scopus 로고    scopus 로고
    • Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill Part II. Nonlinear approaches
    • Oliveira-Esquerre K.P., Seborg D.E., Mori M., Bruns R.E. Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill Part II. Nonlinear approaches. Chem. Eng. J. 2004, 105:61-69.
    • (2004) Chem. Eng. J. , vol.105 , pp. 61-69
    • Oliveira-Esquerre, K.P.1    Seborg, D.E.2    Mori, M.3    Bruns, R.E.4
  • 33
    • 15944400056 scopus 로고    scopus 로고
    • Determination of the relationship between sewage odourand BOD by neural networks
    • Onkal-Engin G., Demir I., Engin S.N. Determination of the relationship between sewage odourand BOD by neural networks. Environ. Modell. Softw. 2005, 20:843-850.
    • (2005) Environ. Modell. Softw. , vol.20 , pp. 843-850
    • Onkal-Engin, G.1    Demir, I.2    Engin, S.N.3
  • 34
  • 35
    • 0034327551 scopus 로고    scopus 로고
    • A reduced-order approach for optimal control of fluids using proper orthogonal decomposition
    • Ravindran S.S. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 2000, 34:425-448.
    • (2000) Int. J. Numer. Methods Fluids , vol.34 , pp. 425-448
    • Ravindran, S.S.1
  • 36
    • 39749167837 scopus 로고    scopus 로고
    • Applying Kohonen self-organizing map as a software sensor to predict biochemical oxygen Demand
    • Rustum R., Adeloye A.J., Scholz M. Applying Kohonen self-organizing map as a software sensor to predict biochemical oxygen Demand. Water Environ. Res. 2008, 80:32-40.
    • (2008) Water Environ. Res. , vol.80 , pp. 32-40
    • Rustum, R.1    Adeloye, A.J.2    Scholz, M.3
  • 37
    • 33750452998 scopus 로고    scopus 로고
    • Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan
    • Shrestha S., Kazama F. Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ. Modell. Softw. 2007, 22:464-475.
    • (2007) Environ. Modell. Softw. , vol.22 , pp. 464-475
    • Shrestha, S.1    Kazama, F.2
  • 38
    • 17844396212 scopus 로고    scopus 로고
    • Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: a case study
    • Singh K.P., Malik A., Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: a case study. Anal. Chim. Acta 2005, 538:355-374.
    • (2005) Anal. Chim. Acta , vol.538 , pp. 355-374
    • Singh, K.P.1    Malik, A.2    Sinha, S.3
  • 39
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-A case study
    • Singh K.P., Basant A., Malik A., Jain G. Artificial neural network modeling of the river water quality-A case study. Ecol. Model. 2009, 220:888-895.
    • (2009) Ecol. Model. , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 40
    • 71749090211 scopus 로고    scopus 로고
    • Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches - a case study
    • Singh K.P., Basant N., Malik A., Jain G. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches - a case study. Anal. Chim. Acta 2010, 658:1-11.
    • (2010) Anal. Chim. Acta , vol.658 , pp. 1-11
    • Singh, K.P.1    Basant, N.2    Malik, A.3    Jain, G.4
  • 41
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • Singh K.P., Gupta S., Kumar A., Shukla S.P. Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 2012, 426:244-255.
    • (2012) Sci. Total Environ. , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 42
    • 84878919662 scopus 로고
    • A comparison of some error estimates for neural network models. Technical Working Paper No. 94-10. Department of Statistics, University of Toronto.
    • Tibshirani, R., 1994. A comparison of some error estimates for neural network models. Technical Working Paper No. 94-10. Department of Statistics, University of Toronto.
    • (1994)
    • Tibshirani, R.1
  • 43
    • 0031734921 scopus 로고    scopus 로고
    • Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis
    • Vega M., Pardo R., Barrado E., Deban L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32:3581-3592.
    • (1998) Water Res. , vol.32 , pp. 3581-3592
    • Vega, M.1    Pardo, R.2    Barrado, E.3    Deban, L.4
  • 44
    • 84865035695 scopus 로고    scopus 로고
    • Calibration of Xinanjiang model parameters using hybrid genetic algorithm based fuzzy optimal model
    • Wang W.C., Cheng C.T., Chau K.W., Xu D.M. Calibration of Xinanjiang model parameters using hybrid genetic algorithm based fuzzy optimal model. J. Hydroinform. 2012, 14:784-799.
    • (2012) J. Hydroinform. , vol.14 , pp. 784-799
    • Wang, W.C.1    Cheng, C.T.2    Chau, K.W.3    Xu, D.M.4
  • 45
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu C.L., Chau K.W., Li Y.S. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 10.1029/2007WR006737.
    • (2009) Water Resour. Res.
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 46
    • 79952524378 scopus 로고    scopus 로고
    • Prediction of primary treatment effluent parameters by Fuzzy Inference System (FIS) approach
    • Yel E., Yalpir S. Prediction of primary treatment effluent parameters by Fuzzy Inference System (FIS) approach. Procedia Comput. Sci. 2011, 3:659-665.
    • (2011) Procedia Comput. Sci. , vol.3 , pp. 659-665
    • Yel, E.1    Yalpir, S.2
  • 47
    • 24944539826 scopus 로고    scopus 로고
    • Wastewater BOD forecasting model for optimal operation using robust time-delay neural network
    • Zhao L., Chai T. Wastewater BOD forecasting model for optimal operation using robust time-delay neural network. Lect. Notes Comput. Sci. 2005, 3498:1028-1033.
    • (2005) Lect. Notes Comput. Sci. , vol.3498 , pp. 1028-1033
    • Zhao, L.1    Chai, T.2
  • 48
    • 0032317676 scopus 로고    scopus 로고
    • An on-line wastewater quality predication system based on a time-delay neural network
    • Zhu J., Zurcher J., Rao M., Meng M.Q.H. An on-line wastewater quality predication system based on a time-delay neural network. Eng. Appl. Artif. Intell. 1998, 11:747-758.
    • (1998) Eng. Appl. Artif. Intell. , vol.11 , pp. 747-758
    • Zhu, J.1    Zurcher, J.2    Rao, M.3    Meng, M.Q.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.