메뉴 건너뛰기




Volumn 117, Issue , 2013, Pages 64-71

State estimation for discrete-time delayed neural networks with fractional uncertainties and sensor saturations

Author keywords

Exponential stability; Fractional uncertainty; Neural networks; Sensor saturation; State estimation; Time varying delays

Indexed keywords

DELAYED NEURAL NETWORKS; ESTIMATION APPROACHES; FRACTIONAL UNCERTAINTY; GLOBALLY EXPONENTIALLY STABLE; PARAMETER UNCERTAINTY; SENSOR SATURATIONS; TIME-VARYING DELAY; UNCERTAINTY STRUCTURE;

EID: 84878896811     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.01.039     Document Type: Article
Times cited : (39)

References (28)
  • 2
    • 3843066575 scopus 로고    scopus 로고
    • Global exponential periodicity and global exponential stability for a class of neural networks
    • August
    • Chen B., Wang J. Global exponential periodicity and global exponential stability for a class of neural networks. Phys. Lett. A 2004, 329(August (1-2)):36-48.
    • (2004) Phys. Lett. A , vol.329 , Issue.1-2 , pp. 36-48
    • Chen, B.1    Wang, J.2
  • 3
    • 84864936263 scopus 로고    scopus 로고
    • ∞ state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays
    • May 5
    • ∞ state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays. IEEE Trans. Neural Networks Learn. Syst. 2012, 23(May (5)):725-736.
    • (2012) IEEE Trans. Neural Networks Learn. Syst. , vol.23 , pp. 725-736
    • Ding, D.1    Wang, Z.2    Shen, B.3    Shu, H.4
  • 4
    • 79959210773 scopus 로고    scopus 로고
    • ∞ filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation. the finite-horizon case
    • July 7
    • ∞ filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation. the finite-horizon case. IEEE Trans. Signal Process. 2011, 59(July (7)):3048-3057.
    • (2011) IEEE Trans. Signal Process. , vol.59 , pp. 3048-3057
    • Dong, H.1    Wang, Z.2    Ho, D.W.C.3    Gao, H.4
  • 5
    • 0025465286 scopus 로고
    • A synthesis procedure for Hopfield's continuous time associative memory
    • July 7
    • Farrel J., Michel A. A synthesis procedure for Hopfield's continuous time associative memory. IEEE Trans. Circuits Syst. 1990, 37(July (7)):2877-2884.
    • (1990) IEEE Trans. Circuits Syst. , vol.37 , pp. 2877-2884
    • Farrel, J.1    Michel, A.2
  • 6
    • 33744782842 scopus 로고    scopus 로고
    • Pattern recognition and synchronization in pulse-coupled neural networks
    • June
    • Haken H. Pattern recognition and synchronization in pulse-coupled neural networks. Nonlinear Dyn. 2006, 44(June (1-4)):269-276.
    • (2006) Nonlinear Dyn. , vol.44 , Issue.1-4 , pp. 269-276
    • Haken, H.1
  • 7
    • 33746913856 scopus 로고    scopus 로고
    • Delay-dependent state estimation for delayed neural networks
    • July 4
    • He Y., Wu Q., Lin M. Delay-dependent state estimation for delayed neural networks. IEEE Trans. Neural Networks 2006, 17(July (4)):1077-1081.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 1077-1081
    • He, Y.1    Wu, Q.2    Lin, M.3
  • 8
    • 84863121605 scopus 로고    scopus 로고
    • Robust sliding mode control for discrete stochastic systems with mixed time delays, and randomly occurring nonlinearities
    • July 7
    • Hu J., Wang Z., Gao H., Stergioulas L.K. Robust sliding mode control for discrete stochastic systems with mixed time delays, and randomly occurring nonlinearities. IEEE Trans. Ind. Electron. 2012, 59(July (7)):3008-3015.
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , pp. 3008-3015
    • Hu, J.1    Wang, Z.2    Gao, H.3    Stergioulas, L.K.4
  • 9
    • 84867397314 scopus 로고    scopus 로고
    • H∞ sliding mode observer design for a class of nonlinear discrete time-delay systems. a delay-fractioning approach
    • November 16
    • Hu J., Wang Z., Niu Y., Stergioulas L.K. H∞ sliding mode observer design for a class of nonlinear discrete time-delay systems. a delay-fractioning approach. Int. J. Robust Nonlinear Control 2012, 22(November (16)):1806-1826.
    • (2012) Int. J. Robust Nonlinear Control , vol.22 , pp. 1806-1826
    • Hu, J.1    Wang, Z.2    Niu, Y.3    Stergioulas, L.K.4
  • 10
    • 0036138293 scopus 로고    scopus 로고
    • Hopfield neural networks for optimization. study of the different dynamics
    • March
    • Joya G., Atencia M.A., Sandoval F. Hopfield neural networks for optimization. study of the different dynamics. Neurocomputing 2010, 43(March (1-4)):219-237.
    • (2010) Neurocomputing , vol.43 , Issue.1-4 , pp. 219-237
    • Joya, G.1    Atencia, M.A.2    Sandoval, F.3
  • 11
    • 77955087595 scopus 로고    scopus 로고
    • ∞ synchronization for uncertain neural networks with mixed time delays
    • February 1
    • ∞ synchronization for uncertain neural networks with mixed time delays. IEEE Trans. Syst. Man Cybern. 2010, 40(February (1)):173-185.
    • (2010) IEEE Trans. Syst. Man Cybern. , vol.40 , pp. 173-185
    • Karimi, H.1    Gao, H.2    Yu, X.3
  • 12
    • 80052889894 scopus 로고    scopus 로고
    • A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays
    • October 5
    • Li X., Gao H., Yu X. A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays. IEEE Trans. Syst. Man Cybern. 2011, 41(October (5)):1275-1286.
    • (2011) IEEE Trans. Syst. Man Cybern. , vol.41 , pp. 1275-1286
    • Li, X.1    Gao, H.2    Yu, X.3
  • 13
    • 33750047873 scopus 로고    scopus 로고
    • Global output convergence of recurrent neural networks with distributed delays
    • February 1
    • Liang J., Cao J. Global output convergence of recurrent neural networks with distributed delays. Nonlinear Anal.-Real World Appl. 2007, 8(February (1)):187-197.
    • (2007) Nonlinear Anal.-Real World Appl. , vol.8 , pp. 187-197
    • Liang, J.1    Cao, J.2
  • 14
    • 77649240657 scopus 로고    scopus 로고
    • Robust state estimation for stochastic genetic regulatory networks
    • January 1
    • Liang J., Lam J. Robust state estimation for stochastic genetic regulatory networks. Int. J. Syst. Sci. 2011, 41(January (1)):47-63.
    • (2011) Int. J. Syst. Sci. , vol.41 , pp. 47-63
    • Liang, J.1    Lam, J.2
  • 15
    • 33646511197 scopus 로고    scopus 로고
    • Global exponential stability of generalized recurrent neural networks with discrete and distributed delays
    • June 5
    • Liu Y., Wang Z., Liu X. Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Networks 2006, 19(June (5)):667-675.
    • (2006) Neural Networks , vol.19 , pp. 667-675
    • Liu, Y.1    Wang, Z.2    Liu, X.3
  • 16
    • 56049116879 scopus 로고    scopus 로고
    • State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays
    • December 48
    • Liu Y., Wang Z., Liu X. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays. Phys. Lett. A 2008, 372(December (48)):7147-7155.
    • (2008) Phys. Lett. A , vol.372 , pp. 7147-7155
    • Liu, Y.1    Wang, Z.2    Liu, X.3
  • 17
    • 55949130821 scopus 로고    scopus 로고
    • State estimation for discrete-time neural networks with time-varying delays
    • December
    • Mou S., Gao H., Qiang W., Fei Z. State estimation for discrete-time neural networks with time-varying delays. Neurocomputing 2008, 72(December (1-3)):643-647.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 643-647
    • Mou, S.1    Gao, H.2    Qiang, W.3    Fei, Z.4
  • 18
    • 70449713292 scopus 로고    scopus 로고
    • Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays
    • November 3
    • Shu H., Wang Z., Lv Z. Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays. Math. Comput. Simul. 2009, 80(November (3)):490-505.
    • (2009) Math. Comput. Simul. , vol.80 , pp. 490-505
    • Shu, H.1    Wang, Z.2    Lv, Z.3
  • 19
    • 77957842440 scopus 로고    scopus 로고
    • Improved asymptotic stability criteria for neural networks with interval time-varying delay
    • December 12
    • Tian J., Zhou X. Improved asymptotic stability criteria for neural networks with interval time-varying delay. Expert Syst. Appl. 2010, 37(December (12)):7521-7525.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 7521-7525
    • Tian, J.1    Zhou, X.2
  • 20
    • 33646371219 scopus 로고    scopus 로고
    • Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays
    • June 4
    • Wang Z., Liu Y., Fraser K., Liu X. Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. A 2006, 354(June (4)):288-297.
    • (2006) Phys. Lett. A , vol.354 , pp. 288-297
    • Wang, Z.1    Liu, Y.2    Fraser, K.3    Liu, X.4
  • 21
    • 33745348656 scopus 로고    scopus 로고
    • Exponential stability of delayed recurrent neural networks with Markovian jumping parameters
    • August
    • Wang Z., Liu Y., Yu L., Liu X. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. Lett. A 2006, 356(August (4-5)):346-352.
    • (2006) Phys. Lett. A , vol.356 , Issue.4-5 , pp. 346-352
    • Wang, Z.1    Liu, Y.2    Yu, L.3    Liu, X.4
  • 22
    • 77954562598 scopus 로고    scopus 로고
    • ∞ finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations
    • ∞ finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations. IEEE Trans. Autom. Control 2010, 55(7):1716-1722.
    • (2010) IEEE Trans. Autom. Control , vol.55 , Issue.7 , pp. 1716-1722
    • Wang, Z.1    Ho, D.W.C.2    Dong, H.3    Gao, H.4
  • 23
    • 78649460673 scopus 로고    scopus 로고
    • Robust state estimation for discrete-time stochastic neural networks with probabilistic measurement delays
    • December
    • Wang Z., Liu Y., Liu X., Shi Y. Robust state estimation for discrete-time stochastic neural networks with probabilistic measurement delays. Neurocomputing 2010, 74(December (1-3)):256-264.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 256-264
    • Wang, Z.1    Liu, Y.2    Liu, X.3    Shi, Y.4
  • 24
    • 0030108725 scopus 로고    scopus 로고
    • ∞ control of systems with parameter uncertainty
    • ∞ control of systems with parameter uncertainty. Int. J. Control 1996, 63(4):741-750.
    • (1996) Int. J. Control , vol.63 , Issue.4 , pp. 741-750
    • Xie, L.1
  • 25
    • 1942443174 scopus 로고    scopus 로고
    • Global robust exponential stability analysis for interval recurrent neural networks
    • May 2
    • Xu S., Lam J., Ho D.W.C., Zou Y. Global robust exponential stability analysis for interval recurrent neural networks. Phys. Lett. A 2004, 325(May (2)):124-133.
    • (2004) Phys. Lett. A , vol.325 , pp. 124-133
    • Xu, S.1    Lam, J.2    Ho, D.W.C.3    Zou, Y.4
  • 26
    • 67649628971 scopus 로고    scopus 로고
    • Set-membership filtering for systems with sensor saturation
    • August 8
    • Yang F., Li Y. Set-membership filtering for systems with sensor saturation. Automatica 2009, 45(August (8)):1896-1902.
    • (2009) Automatica , vol.45 , pp. 1896-1902
    • Yang, F.1    Li, Y.2
  • 27
    • 64049116250 scopus 로고    scopus 로고
    • Novel robust stability criteria for stochastic Hopfield neural networks with time delays
    • April 2
    • Yang R., Gao H., Shi P. Novel robust stability criteria for stochastic Hopfield neural networks with time delays. IEEE Trans. Syst. Man Cybern. 2009, 39(April (2)):467-474.
    • (2009) IEEE Trans. Syst. Man Cybern. , vol.39 , pp. 467-474
    • Yang, R.1    Gao, H.2    Shi, P.3
  • 28
    • 73949111531 scopus 로고    scopus 로고
    • Exponential stability on stochastic neural networks with discrete interval and distributed delays
    • January 1
    • Yang R., Zhang Z., Shi P. Exponential stability on stochastic neural networks with discrete interval and distributed delays. IEEE Trans. Neural Networks 2010, 21(January (1)):169-175.
    • (2010) IEEE Trans. Neural Networks , vol.21 , pp. 169-175
    • Yang, R.1    Zhang, Z.2    Shi, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.