메뉴 건너뛰기




Volumn 56, Issue 6, 2013, Pages 1287-1300

Moving finite element methods for time fractional partial differential equations

Author keywords

blow up solutions; fractional partial differential equations; moving finite element methods

Indexed keywords


EID: 84878803579     PISSN: 16747283     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11425-013-4584-2     Document Type: Article
Times cited : (50)

References (22)
  • 2
    • 36149001420 scopus 로고    scopus 로고
    • A fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C, Liu F, Turner I, et al. A fourier method for the fractional diffusion equation describing sub-diffusion. J Comput Phys, 2007, 227: 886-897.
    • (2007) J Comput Phys , vol.227 , pp. 886-897
    • Chen, C.1    Liu, F.2    Turner, I.3
  • 3
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam, 2002, 29: 3-22.
    • (2002) Nonlinear Dynam , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 4
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams method
    • Diethelm K, Ford N J, Freed A D. Detailed error analysis for a fractional Adams method. Numer Algorithm, 2004, 36: 31-52.
    • (2004) Numer Algorithm , vol.36 , pp. 31-52
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 5
    • 67349184476 scopus 로고    scopus 로고
    • Some recent advances in theory and simulation of fractional diffusion processes
    • Gorenflo R, Mainardi F. Some recent advances in theory and simulation of fractional diffusion processes. J Comput Appl Math, 2009, 229: 400-415.
    • (2009) J Comput Appl Math , vol.229 , pp. 400-415
    • Gorenflo, R.1    Mainardi, F.2
  • 6
    • 0028446372 scopus 로고
    • Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle
    • Huang W, Ren Y, Russell R D. Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle. SIAM J Numer Anal, 1994, 31: 709-730.
    • (1994) SIAM J Numer Anal , vol.31 , pp. 709-730
    • Huang, W.1    Ren, Y.2    Russell, R.D.3
  • 8
    • 0037455650 scopus 로고    scopus 로고
    • Variational mesh adaptation II: error estimates and monitor functions
    • Huang W Z, Sun W W. Variational mesh adaptation II: error estimates and monitor functions. J Comput Phys, 2003, 184: 619-648.
    • (2003) J Comput Phys , vol.184 , pp. 619-648
    • Huang, W.Z.1    Sun, W.W.2
  • 9
    • 79953248728 scopus 로고    scopus 로고
    • High-order finite element methods for time-fractional partial differential equations
    • Jiang Y J, Ma J T. High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math, 2011, 235: 3285-3290.
    • (2011) J Comput Appl Math , vol.235 , pp. 3285-3290
    • Jiang, Y.J.1    Ma, J.T.2
  • 10
    • 27744500223 scopus 로고    scopus 로고
    • Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives
    • Kirane M, Laskri Y, Tatar N E. Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J Math Anal Appl, 2005, 312: 488-501.
    • (2005) J Math Anal Appl , vol.312 , pp. 488-501
    • Kirane, M.1    Laskri, Y.2    Tatar, N.E.3
  • 11
    • 34247212711 scopus 로고    scopus 로고
    • Remarks on fractional derivatives
    • Li C, Deng W. Remarks on fractional derivatives. Appl Math Comput, 2007 187: 777-784.
    • (2007) Appl Math Comput , vol.187 , pp. 777-784
    • Li, C.1    Deng, W.2
  • 12
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • Li X J, Xu C J. A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal, 2009 47: 2108-2131.
    • (2009) SIAM J Numer Anal , vol.47 , pp. 2108-2131
    • Li, X.J.1    Xu, C.J.2
  • 13
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral spproximations for the time-fractional diffusion equation
    • Lin Y M, Xu C J. Finite difference/spectral spproximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225: 1533-1552.
    • (2007) J Comput Phys , vol.225 , pp. 1533-1552
    • Lin, Y.M.1    Xu, C.J.2
  • 14
    • 78650307029 scopus 로고    scopus 로고
    • Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models
    • Liu Y X, Shu C W. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. Sci China Math, 2010, 12: 3255-3278.
    • (2010) Sci China Math , vol.12 , pp. 3255-3278
    • Liu, Y.X.1    Shu, C.W.2
  • 15
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • Lubich C. Discretized fractional calculus. SIAM J Math Anal, 1986, 17: 704-719.
    • (1986) SIAM J Math Anal , vol.17 , pp. 704-719
    • Lubich, C.1
  • 16
    • 79952359857 scopus 로고    scopus 로고
    • Moving collocation methods for time fractional differential equations and simulation of blowup
    • Ma J T, Jiang Y J. Moving collocation methods for time fractional differential equations and simulation of blowup. Sci China Math, 2011, 54: 611-622.
    • (2011) Sci China Math , vol.54 , pp. 611-622
    • Ma, J.T.1    Jiang, Y.J.2
  • 17
    • 70350618343 scopus 로고    scopus 로고
    • Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation
    • McLean W, Mustapha K. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer Algorithm, 2009, 5: 69-88.
    • (2009) Numer Algorithm , vol.5 , pp. 69-88
    • McLean, W.1    Mustapha, K.2
  • 18
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep, 2000, 339: 1-77.
    • (2000) Phys Rep , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 19
    • 78651501283 scopus 로고    scopus 로고
    • Piecewise-linear, discontinous Galerkin method for a fractional diffusion equation
    • Mustapha K, McLean M. Piecewise-linear, discontinous Galerkin method for a fractional diffusion equation. Numer Algorithm, 2011, 56: 159-184.
    • (2011) Numer Algorithm , vol.56 , pp. 159-184
    • Mustapha, K.1    McLean, M.2
  • 20
    • 77958008411 scopus 로고    scopus 로고
    • A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problems
    • Yang J M, Chen Y P. A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problems. Sci China Math, 2010, 10: 2679-2696.
    • (2010) Sci China Math , vol.10 , pp. 2679-2696
    • Yang, J.M.1    Chen, Y.P.2
  • 21
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P, Liu F, Anh V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J Numer Anal, 2008, 46: 1079-1095.
    • (2008) SIAM J Numer Anal , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3
  • 22
    • 70350134071 scopus 로고    scopus 로고
    • Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
    • Zhuang P, Liu F, Anh V, et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J Numer Math, 2009, 74: 645-667.
    • (2009) IMA J Numer Math , vol.74 , pp. 645-667
    • Zhuang, P.1    Liu, F.2    Anh, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.