-
2
-
-
78649486389
-
Rule extraction from support vector machines: a review
-
Barakat N, Bradley A (2010) Rule extraction from support vector machines: a review. Neurocomputing 74: 178-190.
-
(2010)
Neurocomputing
, vol.74
, pp. 178-190
-
-
Barakat, N.1
Bradley, A.2
-
3
-
-
34247600271
-
Learning-based rule-extraction from support vector machines: performance on benchmark data sets
-
Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland, New Zealand
-
Barakat N, Diederich J (2004) Learning-based rule-extraction from support vector machines: performance on benchmark data sets. In: Proceedings of the conference on neuro-computing and evolving intelligence, Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland, New Zealand.
-
(2004)
Proceedings of the conference on neuro-computing and evolving intelligence
-
-
Barakat, N.1
Diederich, J.2
-
4
-
-
33745202712
-
Eclectic rule-extraction from support vector machines
-
Barakat N, Diederich J (2005) Eclectic rule-extraction from support vector machines. Int J Comput Intell 2: 59-62.
-
(2005)
Int J Comput Intell
, vol.2
, pp. 59-62
-
-
Barakat, N.1
Diederich, J.2
-
6
-
-
34948844661
-
A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue
-
Chen Z, Li J, Wei L (2007) A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif Intell Med 41: 161-175.
-
(2007)
Artif Intell Med
, vol.41
, pp. 161-175
-
-
Chen, Z.1
Li, J.2
Wei, L.3
-
7
-
-
1542333735
-
Support vector learning mechanism for fuzzy rule-based modeling: a new approach
-
Chiang J, Hao P (2004) Support vector learning mechanism for fuzzy rule-based modeling: a new approach. IEEE Trans Fuzzy Syst 12(1): 1-12.
-
(2004)
IEEE Trans Fuzzy Syst
, vol.12
, Issue.1
, pp. 1-12
-
-
Chiang, J.1
Hao, P.2
-
11
-
-
10944237748
-
-
Budapest, July 25-29, 2004, CDROM
-
Fu X, Ong CJ, Keerthi S, Hung GG, Goh L (2004) Extracting the knowledge embedded in support vector machines, international joint conference on neural networks (IJCNN'04), Budapest, July 25-29, 2004, CDROM.
-
(2004)
Extracting the knowledge embedded in support vector machines, international joint conference on neural networks (IJCNN'04)
-
-
Fu, X.1
Ong, C.J.2
Keerthi, S.3
Hung, G.G.4
Goh, L.5
-
13
-
-
33645970704
-
Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases
-
Gonçalves LB, Vellasco MMBR, Pacheco MAC, de Souza FJ (2006) Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Transact Syst Man Cybern Part C Appl Rev 36-2: 236-248.
-
(2006)
IEEE Transact Syst Man Cybern Part C Appl Rev
, vol.36
, Issue.2
, pp. 236-248
-
-
Gonçalves, L.B.1
Vellasco, M.M.B.R.2
Pacheco, M.A.C.3
de Souza, F.J.4
-
15
-
-
30044452495
-
-
technical report 21/2001, computer sciences series, University of Mannheim, Germany
-
Heiler M, Cremers D, Schnörr C (2001) Efficient feature subset selection for support vector machines, technical report 21/2001, computer sciences series, University of Mannheim, Germany.
-
(2001)
Efficient feature subset selection for support vector machines
-
-
Heiler, M.1
Cremers, D.2
Schnörr, C.3
-
16
-
-
0036505670
-
A comparison on methods for multi-class support vector machines
-
Hsu C-W, Lin C-J (2002) A comparison on methods for multi-class support vector machines. IEEE Transact Neural Netw 13-2: 415-425.
-
(2002)
IEEE Transact Neural Netw
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
19
-
-
0002229304
-
Pairwise classification and support vector machines
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola (Eds.), Cambridge, MA: MIT Press
-
Kressel UH-G (1999) Pairwise classification and support vector machines. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, MA, pp 225-268.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 225-268
-
-
Kressel, U.H.-G.1
-
21
-
-
11244351634
-
G Prasad, an Approach for on-Line Extraction of Fuzzy Rules Using a Self-Organising Fuzzy Neural Network
-
Leng G, McGinnity TM (2004) G. Prasad, an approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network, in: fuzzy sets system 150: 211-243.
-
(2004)
Fuzzy Sets System
, vol.150
, pp. 211-243
-
-
Leng, G.1
McGinnity, T.M.2
-
22
-
-
0029270928
-
Fuzzy logic systems for engineering: a tutorial
-
Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proceed IEEE 83-3: 345-377.
-
(1995)
Proceed IEEE
, vol.83
, Issue.3
, pp. 345-377
-
-
Mendel, J.M.1
-
23
-
-
0000902690
-
-
Los Altos, CA: Morgan Kaufmann Publishers
-
Moody J, Utans J (1992) Principled architecture selection for neural networks: application to corporate bond rating prediction, advances in neural information processing systems 4. Morgan Kaufmann Publishers, Los Altos, CA, pp 683-690.
-
(1992)
Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction, Advances in Neural Information Processing Systems 4
, pp. 683-690
-
-
Moody, J.1
Utans, J.2
-
25
-
-
33748862421
-
Rule-based learning systems for support vector machines
-
Núñez H, Angulo C, Catala A (2006) Rule-based learning systems for support vector machines. Neural Process Lett 24: 1-18.
-
(2006)
Neural Process Lett
, vol.24
, pp. 1-18
-
-
Núñez, H.1
Angulo, C.2
Catala, A.3
-
26
-
-
78649379419
-
Fuzzy rules generation and extraction from support vector machine based on kernel function firing signals
-
Pitiraggon P, Benjathepanun N, Banditvilai S, Boonjing V (2010) Fuzzy rules generation and extraction from support vector machine based on kernel function firing signals. Int J Eng Appl Sci 6(4): 244-251.
-
(2010)
Int J Eng Appl Sci
, vol.6
, Issue.4
, pp. 244-251
-
-
Pitiraggon, P.1
Benjathepanun, N.2
Banditvilai, S.3
Boonjing, V.4
-
27
-
-
56749117943
-
In defense of one-vs-all classification
-
Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Leran Res 5: 101-141.
-
(2004)
J Mach Leran Res
, vol.5
, pp. 101-141
-
-
Rifkin, R.1
Klautau, A.2
-
30
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Morgan Kaufmann
-
Vapnik VN, Golowich SE, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing, In: advances in neural information processing system 9, Morgan Kaufmann, pp 281-287.
-
(1997)
Advances in neural information processing system 9
, pp. 281-287
-
-
Vapnik, V.N.1
Golowich, S.E.2
Smola, A.3
-
31
-
-
0026943536
-
Generating fuzzy rules by learning from examples
-
Wang L-X, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Transact Syst Man Cybern 22-6: 1414-1427.
-
(1992)
IEEE Transact Syst Man Cybern
, vol.22
, Issue.6
, pp. 1414-1427
-
-
Wang, L.-X.1
Mendel, J.M.2
-
33
-
-
1942420344
-
A modified logistic regression: an approximation to SVM and its applications in large-scale text categorization
-
Washington, DC, USA, August 21-24, 2003
-
Zhang J, Jin R, Yang YM, Hauptmann A (2003) A modified logistic regression: an approximation to SVM and its applications in large-scale text categorization, In: Proceedings of the twentieth international conference, Washington, DC, USA, August 21-24, 2003, pp 888-895.
-
(2003)
Proceedings of the twentieth international conference
, pp. 888-895
-
-
Zhang, J.1
Jin, R.2
Yang, Y.M.3
Hauptmann, A.4
|