메뉴 건너뛰기




Volumn 22, Issue 7-8, 2013, Pages 1571-1580

Fuzzy rules extraction from support vector machines for multi-class classification

Author keywords

Fuzzy rules; Multi class classification; Rules extraction; Support vector machines

Indexed keywords

BINARY CLASSIFICATION PROBLEMS; FEATURE SELECTION ALGORITHM; FUZZY RULE EXTRACTION; INPUT-OUTPUT MAPPING; INTERPRETABLE FUZZY RULES; MULTI-CLASS CLASSIFICATION; RULES EXTRACTION; SUPPORT VECTOR MACHINE (SVMS);

EID: 84878600119     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1048-5     Document Type: Article
Times cited : (17)

References (33)
  • 2
    • 78649486389 scopus 로고    scopus 로고
    • Rule extraction from support vector machines: a review
    • Barakat N, Bradley A (2010) Rule extraction from support vector machines: a review. Neurocomputing 74: 178-190.
    • (2010) Neurocomputing , vol.74 , pp. 178-190
    • Barakat, N.1    Bradley, A.2
  • 3
    • 34247600271 scopus 로고    scopus 로고
    • Learning-based rule-extraction from support vector machines: performance on benchmark data sets
    • Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland, New Zealand
    • Barakat N, Diederich J (2004) Learning-based rule-extraction from support vector machines: performance on benchmark data sets. In: Proceedings of the conference on neuro-computing and evolving intelligence, Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland, New Zealand.
    • (2004) Proceedings of the conference on neuro-computing and evolving intelligence
    • Barakat, N.1    Diederich, J.2
  • 4
    • 33745202712 scopus 로고    scopus 로고
    • Eclectic rule-extraction from support vector machines
    • Barakat N, Diederich J (2005) Eclectic rule-extraction from support vector machines. Int J Comput Intell 2: 59-62.
    • (2005) Int J Comput Intell , vol.2 , pp. 59-62
    • Barakat, N.1    Diederich, J.2
  • 6
    • 34948844661 scopus 로고    scopus 로고
    • A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue
    • Chen Z, Li J, Wei L (2007) A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif Intell Med 41: 161-175.
    • (2007) Artif Intell Med , vol.41 , pp. 161-175
    • Chen, Z.1    Li, J.2    Wei, L.3
  • 7
    • 1542333735 scopus 로고    scopus 로고
    • Support vector learning mechanism for fuzzy rule-based modeling: a new approach
    • Chiang J, Hao P (2004) Support vector learning mechanism for fuzzy rule-based modeling: a new approach. IEEE Trans Fuzzy Syst 12(1): 1-12.
    • (2004) IEEE Trans Fuzzy Syst , vol.12 , Issue.1 , pp. 1-12
    • Chiang, J.1    Hao, P.2
  • 13
    • 33645970704 scopus 로고    scopus 로고
    • Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases
    • Gonçalves LB, Vellasco MMBR, Pacheco MAC, de Souza FJ (2006) Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Transact Syst Man Cybern Part C Appl Rev 36-2: 236-248.
    • (2006) IEEE Transact Syst Man Cybern Part C Appl Rev , vol.36 , Issue.2 , pp. 236-248
    • Gonçalves, L.B.1    Vellasco, M.M.B.R.2    Pacheco, M.A.C.3    de Souza, F.J.4
  • 16
    • 0036505670 scopus 로고    scopus 로고
    • A comparison on methods for multi-class support vector machines
    • Hsu C-W, Lin C-J (2002) A comparison on methods for multi-class support vector machines. IEEE Transact Neural Netw 13-2: 415-425.
    • (2002) IEEE Transact Neural Netw , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 19
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola (Eds.), Cambridge, MA: MIT Press
    • Kressel UH-G (1999) Pairwise classification and support vector machines. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, MA, pp 225-268.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 225-268
    • Kressel, U.H.-G.1
  • 21
    • 11244351634 scopus 로고    scopus 로고
    • G Prasad, an Approach for on-Line Extraction of Fuzzy Rules Using a Self-Organising Fuzzy Neural Network
    • Leng G, McGinnity TM (2004) G. Prasad, an approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network, in: fuzzy sets system 150: 211-243.
    • (2004) Fuzzy Sets System , vol.150 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2
  • 22
    • 0029270928 scopus 로고
    • Fuzzy logic systems for engineering: a tutorial
    • Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proceed IEEE 83-3: 345-377.
    • (1995) Proceed IEEE , vol.83 , Issue.3 , pp. 345-377
    • Mendel, J.M.1
  • 25
    • 33748862421 scopus 로고    scopus 로고
    • Rule-based learning systems for support vector machines
    • Núñez H, Angulo C, Catala A (2006) Rule-based learning systems for support vector machines. Neural Process Lett 24: 1-18.
    • (2006) Neural Process Lett , vol.24 , pp. 1-18
    • Núñez, H.1    Angulo, C.2    Catala, A.3
  • 26
    • 78649379419 scopus 로고    scopus 로고
    • Fuzzy rules generation and extraction from support vector machine based on kernel function firing signals
    • Pitiraggon P, Benjathepanun N, Banditvilai S, Boonjing V (2010) Fuzzy rules generation and extraction from support vector machine based on kernel function firing signals. Int J Eng Appl Sci 6(4): 244-251.
    • (2010) Int J Eng Appl Sci , vol.6 , Issue.4 , pp. 244-251
    • Pitiraggon, P.1    Benjathepanun, N.2    Banditvilai, S.3    Boonjing, V.4
  • 27
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Leran Res 5: 101-141.
    • (2004) J Mach Leran Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 30
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Morgan Kaufmann
    • Vapnik VN, Golowich SE, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing, In: advances in neural information processing system 9, Morgan Kaufmann, pp 281-287.
    • (1997) Advances in neural information processing system 9 , pp. 281-287
    • Vapnik, V.N.1    Golowich, S.E.2    Smola, A.3
  • 31
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wang L-X, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Transact Syst Man Cybern 22-6: 1414-1427.
    • (1992) IEEE Transact Syst Man Cybern , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.-X.1    Mendel, J.M.2
  • 33
    • 1942420344 scopus 로고    scopus 로고
    • A modified logistic regression: an approximation to SVM and its applications in large-scale text categorization
    • Washington, DC, USA, August 21-24, 2003
    • Zhang J, Jin R, Yang YM, Hauptmann A (2003) A modified logistic regression: an approximation to SVM and its applications in large-scale text categorization, In: Proceedings of the twentieth international conference, Washington, DC, USA, August 21-24, 2003, pp 888-895.
    • (2003) Proceedings of the twentieth international conference , pp. 888-895
    • Zhang, J.1    Jin, R.2    Yang, Y.M.3    Hauptmann, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.