-
2
-
-
84947205653
-
-
Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is nearest neighbor meaningful? In Proc. 7th intern. conf. on database theory (pp. 217-235)
-
Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is nearest neighbor meaningful? In Proc. 7th intern. conf. on database theory (pp. 217-235)
-
-
-
-
3
-
-
33646355170
-
In search of non-Gaussian component of a high-dimensional distribution
-
Blanchard G., Kawanabe M., Sugiyama M., Spokoiny V., and Müller K.-R. In search of non-Gaussian component of a high-dimensional distribution. Journal of Machine Learning Research 7 (2006) 247-282
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 247-282
-
-
Blanchard, G.1
Kawanabe, M.2
Sugiyama, M.3
Spokoiny, V.4
Müller, K.-R.5
-
6
-
-
3543131272
-
Geodesic entropic graphs for dimension and entropy estimation in manifold learning
-
Costa J., and Hero A.O. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Transactions on Signal Processing 52 8 (2004) 2210-2221
-
(2004)
IEEE Transactions on Signal Processing
, vol.52
, Issue.8
, pp. 2210-2221
-
-
Costa, J.1
Hero, A.O.2
-
9
-
-
0013236658
-
-
Birkhauser Verlag
-
Gromov M. Metric structures for riemannian and non-riemannian spaces. Progress in mathematics Vol. 152 (1999), Birkhauser Verlag
-
(1999)
Progress in mathematics
, vol.152
-
-
Gromov, M.1
-
11
-
-
36349004092
-
-
Hein, M., & Maier, M. (2007). Manifold denoising as preprocessing for finding natural representations of data. In Proc. twenty-second AAAI conference on artificial intelligence (pp. 1646-1649)
-
Hein, M., & Maier, M. (2007). Manifold denoising as preprocessing for finding natural representations of data. In Proc. twenty-second AAAI conference on artificial intelligence (pp. 1646-1649)
-
-
-
-
12
-
-
84898957854
-
Intrinsic dimension estimation using packing numbers
-
MIT Press
-
Kégl B. Intrinsic dimension estimation using packing numbers. Advances in neural information processing systems Vol. 15 (2003), MIT Press 681-688
-
(2003)
Advances in neural information processing systems
, vol.15
, pp. 681-688
-
-
Kégl, B.1
-
13
-
-
0038609707
-
-
Amer. Math. Soc, Providence
-
Ledoux M. The concentration of measure phenomenon. Math. surveys and monographs Vol. 89 (2001), Amer. Math. Soc, Providence
-
(2001)
Math. surveys and monographs
, vol.89
-
-
Ledoux, M.1
-
14
-
-
35248851077
-
A few notes on statistical learning theory
-
Advanced lectures in machine learning. Mendelson S., and Smola A.J. (Eds), Springer
-
Mendelson S. A few notes on statistical learning theory. In: Mendelson S., and Smola A.J. (Eds). Advanced lectures in machine learning. Lect. notes in computer sci. Vol. 2600 (2003), Springer 1-40
-
(2003)
Lect. notes in computer sci.
, vol.2600
, pp. 1-40
-
-
Mendelson, S.1
-
15
-
-
23044527648
-
Topics in asymptotic geometric analysis
-
Milman V. Topics in asymptotic geometric analysis. Geometric and functional analysis special volume GAFA2000 (2000) 792-815
-
(2000)
Geometric and functional analysis
, vol.special GAFA2000
, pp. 792-815
-
-
Milman, V.1
-
16
-
-
0004034109
-
-
Springer
-
Milman V.D., and Schechtman G. Asymptotic theory of finite-dimensional normed spaces (with an Appendix by M. Gromov). Lecture Notes in Math. Vol. 1200 (1986), Springer
-
(1986)
Lecture Notes in Math.
, vol.1200
-
-
Milman, V.D.1
Schechtman, G.2
-
17
-
-
0033909182
-
On the geometry of similarity search: dimensionality curse and concentration of measure
-
Pestov V. On the geometry of similarity search: dimensionality curse and concentration of measure. Information Processing Letters 73 (2000) 47-51
-
(2000)
Information Processing Letters
, vol.73
, pp. 47-51
-
-
Pestov, V.1
-
18
-
-
40649129603
-
-
Pestov, V. (2007). Intrinsic dimension of a dataset: what properties does one expect? In: Proc. of the 22-nd int. joint conf. on neural networks (pp. 1775-1780)
-
Pestov, V. (2007). Intrinsic dimension of a dataset: what properties does one expect? In: Proc. of the 22-nd int. joint conf. on neural networks (pp. 1775-1780)
-
-
-
-
19
-
-
41349085553
-
Neural networks for estimating intrinsic dimension
-
Potapov A., and Ali M.K. Neural networks for estimating intrinsic dimension. Physical Review E 65(2a) 4 (2002) 046212.1-046212.7
-
(2002)
Physical Review E
, vol.65 2a
, Issue.4
-
-
Potapov, A.1
Ali, M.K.2
-
20
-
-
0003696856
-
-
Springer, NY, Berlin, Heidelberg
-
Rachev S.T., and Rüschendorf L. Mass transportation problems. Volume I: Theory. Volume II: Applications (1998), Springer, NY, Berlin, Heidelberg
-
(1998)
Mass transportation problems. Volume I: Theory. Volume II: Applications
-
-
Rachev, S.T.1
Rüschendorf, L.2
-
21
-
-
72949095800
-
-
Tatti, N., Mielikainen, T., Gionis, A., & Mannila, H. (2006). What is the dimension of your binary data? In 6th international conference on data mining (pp. 603-612)
-
Tatti, N., Mielikainen, T., Gionis, A., & Mannila, H. (2006). What is the dimension of your binary data? In 6th international conference on data mining (pp. 603-612)
-
-
-
-
22
-
-
40649106831
-
-
Traina, C. Jr., Traina, A.J.M., & Faloutsos, C. (1999). Distance exponent: A new concept for selectivity estimation in metric trees. Technical report CMU-CS-99-110. Computer Science Department, Carnegie Mellon University
-
Traina, C. Jr., Traina, A.J.M., & Faloutsos, C. (1999). Distance exponent: A new concept for selectivity estimation in metric trees. Technical report CMU-CS-99-110. Computer Science Department, Carnegie Mellon University
-
-
-
|