메뉴 건너뛰기




Volumn 21, Issue 2-3, 2008, Pages 204-213

An axiomatic approach to intrinsic dimension of a dataset

Author keywords

Concentration of measure; Curse of dimensionality; Features; Gromov distance; High dimensional noise; Intrinsic dimension of datasets; Random sample of a manifold; Space with metric and measure

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA STRUCTURES; MATHEMATICAL MODELS; PROBABILITY;

EID: 40649090828     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2007.12.030     Document Type: Article
Times cited : (47)

References (23)
  • 2
    • 84947205653 scopus 로고    scopus 로고
    • Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is nearest neighbor meaningful? In Proc. 7th intern. conf. on database theory (pp. 217-235)
    • Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is nearest neighbor meaningful? In Proc. 7th intern. conf. on database theory (pp. 217-235)
  • 6
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • Costa J., and Hero A.O. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Transactions on Signal Processing 52 8 (2004) 2210-2221
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.1    Hero, A.O.2
  • 9
    • 0013236658 scopus 로고    scopus 로고
    • Birkhauser Verlag
    • Gromov M. Metric structures for riemannian and non-riemannian spaces. Progress in mathematics Vol. 152 (1999), Birkhauser Verlag
    • (1999) Progress in mathematics , vol.152
    • Gromov, M.1
  • 11
    • 36349004092 scopus 로고    scopus 로고
    • Hein, M., & Maier, M. (2007). Manifold denoising as preprocessing for finding natural representations of data. In Proc. twenty-second AAAI conference on artificial intelligence (pp. 1646-1649)
    • Hein, M., & Maier, M. (2007). Manifold denoising as preprocessing for finding natural representations of data. In Proc. twenty-second AAAI conference on artificial intelligence (pp. 1646-1649)
  • 12
    • 84898957854 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • MIT Press
    • Kégl B. Intrinsic dimension estimation using packing numbers. Advances in neural information processing systems Vol. 15 (2003), MIT Press 681-688
    • (2003) Advances in neural information processing systems , vol.15 , pp. 681-688
    • Kégl, B.1
  • 13
    • 0038609707 scopus 로고    scopus 로고
    • Amer. Math. Soc, Providence
    • Ledoux M. The concentration of measure phenomenon. Math. surveys and monographs Vol. 89 (2001), Amer. Math. Soc, Providence
    • (2001) Math. surveys and monographs , vol.89
    • Ledoux, M.1
  • 14
    • 35248851077 scopus 로고    scopus 로고
    • A few notes on statistical learning theory
    • Advanced lectures in machine learning. Mendelson S., and Smola A.J. (Eds), Springer
    • Mendelson S. A few notes on statistical learning theory. In: Mendelson S., and Smola A.J. (Eds). Advanced lectures in machine learning. Lect. notes in computer sci. Vol. 2600 (2003), Springer 1-40
    • (2003) Lect. notes in computer sci. , vol.2600 , pp. 1-40
    • Mendelson, S.1
  • 15
    • 23044527648 scopus 로고    scopus 로고
    • Topics in asymptotic geometric analysis
    • Milman V. Topics in asymptotic geometric analysis. Geometric and functional analysis special volume GAFA2000 (2000) 792-815
    • (2000) Geometric and functional analysis , vol.special GAFA2000 , pp. 792-815
    • Milman, V.1
  • 16
    • 0004034109 scopus 로고
    • Springer
    • Milman V.D., and Schechtman G. Asymptotic theory of finite-dimensional normed spaces (with an Appendix by M. Gromov). Lecture Notes in Math. Vol. 1200 (1986), Springer
    • (1986) Lecture Notes in Math. , vol.1200
    • Milman, V.D.1    Schechtman, G.2
  • 17
    • 0033909182 scopus 로고    scopus 로고
    • On the geometry of similarity search: dimensionality curse and concentration of measure
    • Pestov V. On the geometry of similarity search: dimensionality curse and concentration of measure. Information Processing Letters 73 (2000) 47-51
    • (2000) Information Processing Letters , vol.73 , pp. 47-51
    • Pestov, V.1
  • 18
    • 40649129603 scopus 로고    scopus 로고
    • Pestov, V. (2007). Intrinsic dimension of a dataset: what properties does one expect? In: Proc. of the 22-nd int. joint conf. on neural networks (pp. 1775-1780)
    • Pestov, V. (2007). Intrinsic dimension of a dataset: what properties does one expect? In: Proc. of the 22-nd int. joint conf. on neural networks (pp. 1775-1780)
  • 19
    • 41349085553 scopus 로고    scopus 로고
    • Neural networks for estimating intrinsic dimension
    • Potapov A., and Ali M.K. Neural networks for estimating intrinsic dimension. Physical Review E 65(2a) 4 (2002) 046212.1-046212.7
    • (2002) Physical Review E , vol.65 2a , Issue.4
    • Potapov, A.1    Ali, M.K.2
  • 21
    • 72949095800 scopus 로고    scopus 로고
    • Tatti, N., Mielikainen, T., Gionis, A., & Mannila, H. (2006). What is the dimension of your binary data? In 6th international conference on data mining (pp. 603-612)
    • Tatti, N., Mielikainen, T., Gionis, A., & Mannila, H. (2006). What is the dimension of your binary data? In 6th international conference on data mining (pp. 603-612)
  • 22
    • 40649106831 scopus 로고    scopus 로고
    • Traina, C. Jr., Traina, A.J.M., & Faloutsos, C. (1999). Distance exponent: A new concept for selectivity estimation in metric trees. Technical report CMU-CS-99-110. Computer Science Department, Carnegie Mellon University
    • Traina, C. Jr., Traina, A.J.M., & Faloutsos, C. (1999). Distance exponent: A new concept for selectivity estimation in metric trees. Technical report CMU-CS-99-110. Computer Science Department, Carnegie Mellon University


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.