메뉴 건너뛰기




Volumn 109, Issue 10, 2013, Pages 2596-2605

The lateral intraparietal area codes the location of saccade targets and not the dimension of the saccades that will be made to acquire them

Author keywords

Eye movements; Macaque monkey; Parietal cortex; Reference frame; Saccadic adaptation

Indexed keywords

ANIMAL EXPERIMENT; ARTICLE; EVOKED VISUAL RESPONSE; FEMALE; INTRAPARIETAL SULCUS; LATERAL INTRAPARIETAL AREA; MALE; NERVE CELL; NONHUMAN; OCULOMOTOR SYSTEM; PARIETAL CORTEX; PRIORITY JOURNAL; RECEPTIVE FIELD; RHESUS MONKEY; SACCADIC EYE MOVEMENT; VISUAL ADAPTATION;

EID: 84878530826     PISSN: 00223077     EISSN: 15221598     Source Type: Journal    
DOI: 10.1152/jn.00349.2012     Document Type: Article
Times cited : (30)

References (39)
  • 2
    • 0033606970 scopus 로고    scopus 로고
    • Illusory shifts in visual direction accompany adaptation of saccadic eye movements
    • Bahcall DO, Kowler E. Illusory shifts in visual direction accompany adaptation of saccadic eye movements. Nature 400: 864-866, 1999.
    • (1999) Nature , vol.400 , pp. 864-866
    • Bahcall, D.O.1    Kowler, E.2
  • 4
    • 0035461291 scopus 로고    scopus 로고
    • Representation of the visual field in the lateral intraparietal area of macaque monkeys: A quantitative receptive field analysis
    • Ben Hamed S, Duhamel JR, Bremmer F, Graf W. Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Exp Brain Res 140: 127-144, 2001.
    • (2001) Exp Brain Res , vol.140 , pp. 127-144
    • Ben, H.S.1    Duhamel, J.R.2    Bremmer, F.3    Graf, W.4
  • 5
    • 0037414649 scopus 로고    scopus 로고
    • Neuronal activity in the lateral intraparietal area and spatial attention
    • Bisley JW, Goldberg ME. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299: 81-86, 2003a.
    • (2003) Science , vol.299 , pp. 81-86
    • Bisley, J.W.1    Goldberg, M.E.2
  • 6
    • 0041921057 scopus 로고    scopus 로고
    • The role of the parietal cortex in the neural processing of saccadic eye movements
    • Bisley JW, Goldberg ME. The role of the parietal cortex in the neural processing of saccadic eye movements. Adv Neurol 93: 141-157, 2003b.
    • (2003) Adv Neurol , vol.93 , pp. 141-157
    • Bisley, J.W.1    Goldberg, M.E.2
  • 7
    • 0016706109 scopus 로고
    • Failure to detect displacement of the visual world during saccadic eye movements
    • Bridgeman B, Hendry D, Stark L. Failure to detect displacement of the visual world during saccadic eye movements. Vision Res 15: 719-722, 1975.
    • (1975) Vision Res , vol.15 , pp. 719-722
    • Bridgeman, B.1    Hendry, D.2    Stark, L.3
  • 8
    • 58949102241 scopus 로고    scopus 로고
    • Head-unrestrained gaze adaptation in the rhesus macaque
    • Cecala AL, Freedman EG. Head-unrestrained gaze adaptation in the rhesus macaque. J Neurophysiol 101: 164-183, 2009.
    • (2009) J Neurophysiol , vol.101 , pp. 164-183
    • Cecala, A.L.1    Freedman, E.G.2
  • 9
    • 34548690817 scopus 로고    scopus 로고
    • Motor space structures perceptual space: Evidence from human saccadic adaptation
    • Collins T, Doré-Mazars K, Lappe M. Motor space structures perceptual space: evidence from human saccadic adaptation. Brain Res 1172: 32-39, 2007.
    • (2007) Brain Res , vol.1172 , pp. 32-39
    • Collins, T.1    Doré-Mazars, K.2    Lappe, M.3
  • 10
    • 83455179189 scopus 로고    scopus 로고
    • Intrinsic reference frames of superior colliculus visuomotor receptive fields during head-unrestrained gaze shifts
    • DeSouza JF, Keith GP, Yan X, Blohm G, Wang H, Crawford JD. Intrinsic reference frames of superior colliculus visuomotor receptive fields during head-unrestrained gaze shifts. J Neurosci 31: 18313-18326, 2011.
    • (2011) J Neurosci , vol.31 , pp. 18313-18326
    • Desouza, J.F.1    Keith, G.P.2    Yan, X.3    Blohm, G.4    Wang, H.5    Crawford, J.D.6
  • 11
    • 0029884453 scopus 로고    scopus 로고
    • Saccade target selection and object recognition: Evidence for a common attentional mechanism
    • Deubel H, Schneider WX. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res 36: 1827-1837, 1996.
    • (1996) Vision Res , vol.36 , pp. 1827-1837
    • Deubel, H.1    Schneider, W.X.2
  • 12
    • 0034061470 scopus 로고    scopus 로고
    • The role of the attention focus in the visual information processing underlying saccadic adaptation
    • Ditterich J, Eggert T, Straube A. The role of the attention focus in the visual information processing underlying saccadic adaptation. Vision Res 40: 1125-1134, 2000.
    • (2000) Vision Res , vol.40 , pp. 1125-1134
    • Ditterich, J.1    Eggert, T.2    Straube, A.3
  • 13
    • 0036092581 scopus 로고    scopus 로고
    • Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus
    • Edelman JA, Goldberg ME. Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus. J Neurophysiol 87: 1915-1923, 2002.
    • (2002) J Neurophysiol , vol.87 , pp. 1915-1923
    • Edelman, J.A.1    Goldberg, M.E.2
  • 14
    • 34948825330 scopus 로고    scopus 로고
    • Human parietal "reach region" primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task
    • Fernandez-Ruiz J, Goltz HC, DeSouza JF, Vilis T, Crawford JD. Human parietal "reach region" primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb Cortex 17: 2283-2292, 2007.
    • (2007) Cereb Cortex , vol.17 , pp. 2283-2292
    • Fernandez-Ruiz, J.1    Goltz, H.C.2    Desouza, J.F.3    Vilis, T.4    Crawford, J.D.5
  • 15
    • 0030746375 scopus 로고    scopus 로고
    • Monkey superior colliculus activity during short-term saccadic adaptation
    • Frens MA, Van Opstal AJ. Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull 43: 473-483, 1997.
    • (1997) Brain Res Bull , vol.43 , pp. 473-483
    • Frens, M.A.1    van Opstal, A.J.2
  • 16
    • 0023908107 scopus 로고
    • Memory related motor planning activity in posterior parietal cortex of macaque
    • Gnadt JW, Andersen RA. Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70: 216-220, 1988.
    • (1988) Exp Brain Res , vol.70 , pp. 216-220
    • Gnadt, J.W.1    Andersen, R.A.2
  • 18
    • 0033306043 scopus 로고    scopus 로고
    • Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task
    • Gottlieb J, Goldberg ME. Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat Neurosci 2: 906-912, 1999.
    • (1999) Nat Neurosci , vol.2 , pp. 906-912
    • Gottlieb, J.1    Goldberg, M.E.2
  • 19
    • 0032576719 scopus 로고    scopus 로고
    • The representation of visual salience in monkey parietal cortex
    • Gottlieb JP, Kusunoki M, Goldberg ME. The representation of visual salience in monkey parietal cortex. Nature 391: 481-484, 1998.
    • (1998) Nature , vol.391 , pp. 481-484
    • Gottlieb, J.P.1    Kusunoki, M.2    Goldberg, M.E.3
  • 21
    • 33745937294 scopus 로고    scopus 로고
    • Amplitude adaptation occurs where a saccade is represented as a vector and not as its components
    • Hopp JJ, Fuchs AF. Amplitude adaptation occurs where a saccade is represented as a vector and not as its components. Vision Res 46: 3121-3128, 2006.
    • (2006) Vision Res , vol.46 , pp. 3121-3128
    • Hopp, J.J.1    Fuchs, A.F.2
  • 22
    • 57749206213 scopus 로고    scopus 로고
    • Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals
    • Ipata AE, Gee AL, Bisley JW, Goldberg ME. Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals. Exp Brain Res 192: 479-488, 2009.
    • (2009) Exp Brain Res , vol.192 , pp. 479-488
    • Ipata, A.E.1    Gee, A.L.2    Bisley, J.W.3    Goldberg, M.E.4
  • 23
    • 33645563859 scopus 로고    scopus 로고
    • Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task
    • Ipata AE, Gee AL, Goldberg ME, Bisley JW. Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J Neurosci 26: 3656-3661, 2006.
    • (2006) J Neurosci , vol.26 , pp. 3656-3661
    • Ipata, A.E.1    Gee, A.L.2    Goldberg, M.E.3    Bisley, J.W.4
  • 24
    • 0019190225 scopus 로고
    • Implantation of magnetic search coils for measurement of eye position: An improved method
    • Judge SJ, Richmond BJ, Chu FC. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20: 535-538, 1980.
    • (1980) Vision Res , vol.20 , pp. 535-538
    • Judge, S.J.1    Richmond, B.J.2    Chu, F.C.3
  • 25
    • 34147141334 scopus 로고    scopus 로고
    • Microstimulation of the midbrain tegmentum creates learning signals for saccade adaptation
    • Kojima Y, Yoshida K, Iwamoto Y. Microstimulation of the midbrain tegmentum creates learning signals for saccade adaptation. J Neurosci 27: 3759-3767, 2007.
    • (2007) J Neurosci , vol.27 , pp. 3759-3767
    • Kojima, Y.1    Yoshida, K.2    Iwamoto, Y.3
  • 26
    • 76749139561 scopus 로고
    • Parametric adjustment in saccadic eye movements
    • McLaughlin SC. Parametric adjustment in saccadic eye movements. Percept Psychophys 2: 359-362, 1967.
    • (1967) Percept Psychophys , vol.2 , pp. 359-362
    • McLaughlin, S.C.1
  • 27
    • 0033027817 scopus 로고    scopus 로고
    • Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction
    • Noto CT, Watanabe S, Fuchs AF. Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. J Neurophysiol 81: 2798-2813, 1999.
    • (1999) J Neurophysiol , vol.81 , pp. 2798-2813
    • Noto, C.T.1    Watanabe, S.2    Fuchs, A.F.3
  • 28
    • 0019218452 scopus 로고
    • Cerebellar-dependent adaptive control of primate saccadic system
    • Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44: 1058-1076, 1980.
    • (1980) J Neurophysiol , vol.44 , pp. 1058-1076
    • Optican, L.M.1    Robinson, D.A.2
  • 29
    • 0030722168 scopus 로고    scopus 로고
    • Gain adaptation of eye and head movement components of simian gaze shifts
    • Phillips JO, Fuchs AF, Ling L, Iwamoto Y, Votaw S. Gain adaptation of eye and head movement components of simian gaze shifts. J Neurophysiol 78: 2817-2821, 1997.
    • (1997) J Neurophysiol , vol.78 , pp. 2817-2821
    • Phillips, J.O.1    Fuchs, A.F.2    Ling, L.3    Iwamoto, Y.4    Votaw, S.5
  • 30
    • 0031802373 scopus 로고    scopus 로고
    • Response fields of intraparietal neurons quantified with multiple saccadic targets
    • Platt ML, Glimcher PW. Response fields of intraparietal neurons quantified with multiple saccadic targets. Exp Brain Res 121: 65-75, 1998.
    • (1998) Exp Brain Res , vol.121 , pp. 65-75
    • Platt, M.L.1    Glimcher, P.W.2
  • 31
    • 77958525615 scopus 로고    scopus 로고
    • The locus of motor activity in the superior colliculus of the rhesus monkey is unaltered during saccadic adaptation
    • Quessy S, Quinet J, Freedman EG. The locus of motor activity in the superior colliculus of the rhesus monkey is unaltered during saccadic adaptation. J Neurosci 30: 14235-14244, 2010.
    • (2010) J Neurosci , vol.30 , pp. 14235-14244
    • Quessy, S.1    Quinet, J.2    Freedman, E.G.3
  • 32
  • 34
    • 33747060493 scopus 로고    scopus 로고
    • Complex spike activity of Purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades
    • Soetedjo R, Fuchs AF. Complex spike activity of Purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci 26: 7741-7755, 2006.
    • (2006) J Neurosci , vol.26 , pp. 7741-7755
    • Soetedjo, R.1    Fuchs, A.F.2
  • 35
    • 0035846648 scopus 로고    scopus 로고
    • Cerebellar lesions impair rapid saccade amplitude adaptation
    • Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology 57: 2105-2108, 2001.
    • (2001) Neurology , vol.57 , pp. 2105-2108
    • Straube, A.1    Deubel, H.2    Ditterich, J.3    Eggert, T.4
  • 36
    • 0031036198 scopus 로고    scopus 로고
    • Characteristics of saccadic gain adaptation in rhesus macaques
    • Straube A, Fuchs AF, Usher S, Robinson FR. Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol 77: 874-895, 1997.
    • (1997) J Neurophysiol , vol.77 , pp. 874-895
    • Straube, A.1    Fuchs, A.F.2    Usher, S.3    Robinson, F.R.4
  • 37
    • 0141565041 scopus 로고    scopus 로고
    • Contribution of signals downstream from adaptation to saccade programming
    • Tanaka M. Contribution of signals downstream from adaptation to saccade programming. J Neurophysiol 90: 2080-2086, 2003.
    • (2003) J Neurophysiol , vol.90 , pp. 2080-2086
    • Tanaka, M.1
  • 38
    • 1342301634 scopus 로고    scopus 로고
    • Persistent LIP activity in memory antisaccades: Working memory for a sensorimotor transformation
    • Zhang M, Barash S. Persistent LIP activity in memory antisaccades: working memory for a sensorimotor transformation. J Neurophysiol 91: 1424-1441, 2004.
    • (2004) J Neurophysiol , vol.91 , pp. 1424-1441
    • Zhang, M.1    Barash, S.2
  • 39
    • 49349112402 scopus 로고    scopus 로고
    • Monkey primary somatosensory cortex has a proprioceptive representation of eye position
    • Zhang M, Wang X, Goldberg ME. Monkey primary somatosensory cortex has a proprioceptive representation of eye position. Prog Brain Res 171: 37-45, 2008.
    • (2008) Prog Brain Res , vol.171 , pp. 37-45
    • Zhang, M.1    Wang, X.2    Goldberg, M.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.