메뉴 건너뛰기




Volumn 27, Issue 4, 2013, Pages 321-336

QSAR workbench: Automating QSAR modeling to drive compound design

Author keywords

Pipeline pilot; QSAR; Workflow

Indexed keywords

COMPUTATIONAL CHEMISTRY; MODEL BUILDINGS; MOLECULAR GRAPHICS; PIPELINES; STRUCTURAL DESIGN; WEB SERVICES;

EID: 84878505838     PISSN: 0920654X     EISSN: 15734951     Source Type: Journal    
DOI: 10.1007/s10822-013-9648-4     Document Type: Article
Times cited : (36)

References (50)
  • 3
    • 0037038314 scopus 로고    scopus 로고
    • Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs
    • 10.1021/jm020919o 1:CAS:528:DC%2BD38XnvV2lu78%3D
    • Nicolotti O, Gillet VJ, Fleming PJ, Green DVS (2002) Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs. J Med Chem 45:5069-5080
    • (2002) J Med Chem , vol.45 , pp. 5069-5080
    • Nicolotti, O.1    Gillet, V.J.2    Fleming, P.J.3    Green, D.V.S.4
  • 4
    • 52049115881 scopus 로고    scopus 로고
    • Evolving interpretable structure-activity relationships. 1. Reduced graph queries
    • Birchall K, Gillet VJ, Harper G, Pickett SD (2008) Evolving interpretable structure-activity relationships. 1. Reduced graph queries. J Chem Inf Model 48:1543-1557
    • (2008) J Chem Inf Model , vol.48 , pp. 1543-1557
    • Birchall, K.1    Gillet, V.J.2    Harper, G.3    Pickett, S.D.4
  • 5
    • 52049117428 scopus 로고    scopus 로고
    • Evolving interpretable structure-activity relationship models. 2. Using multiobjective optimization to derive multiple models
    • 10.1021/ci800051h 1:CAS:528:DC%2BD1cXos12qsrs%3D
    • Birchall K, Gillet VJ, Harper G, Pickett SD (2008) Evolving interpretable structure-activity relationship models. 2. Using multiobjective optimization to derive multiple models. J Chem Inf Model 48:1558-1570
    • (2008) J Chem Inf Model , vol.48 , pp. 1558-1570
    • Birchall, K.1    Gillet, V.J.2    Harper, G.3    Pickett, S.D.4
  • 6
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • 10.1002/minf.201000061 1:CAS:528:DC%2BC3cXpslWktrw%3D
    • Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476-488
    • (2010) Mol Inform , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 7
    • 79955996710 scopus 로고    scopus 로고
    • Rethinking 3D-QSAR
    • 10.1007/s10822-010-9403-z 1:CAS:528:DC%2BC3MXivVCktLk%3D
    • Cramer RD (2011) Rethinking 3D-QSAR. J Comput Aided Mol Des 25:197-201
    • (2011) J Comput Aided Mol des , vol.25 , pp. 197-201
    • Cramer, R.D.1
  • 9
    • 33644526245 scopus 로고    scopus 로고
    • Automated QSPR through competitive workflow
    • 10.1007/s10822-005-9029-8 1:CAS:528:DC%2BD28XhslWntro%3D
    • Cartmell J, Enoch S, Krstajic D, Leahy D (2005) Automated QSPR through competitive workflow. J Comput Aided Mol Des 19:821-833
    • (2005) J Comput Aided Mol des , vol.19 , pp. 821-833
    • Cartmell, J.1    Enoch, S.2    Krstajic, D.3    Leahy, D.4
  • 10
    • 79958773884 scopus 로고    scopus 로고
    • Predictivity of simulated ADME AutoQSAR models over time
    • 10.1002/minf.201000160 1:CAS:528:DC%2BC3MXjs1Wrtb4%3D
    • Rodgers SL, Davis AM, Tomkinson NP, van de Waterbeemd H (2011) Predictivity of simulated ADME AutoQSAR models over time. Mol Inform 30:256-266
    • (2011) Mol Inform , vol.30 , pp. 256-266
    • Rodgers, S.L.1    Davis, A.M.2    Tomkinson, N.P.3    Van De Waterbeemd, H.4
  • 11
    • 84875799476 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship models that stand the test of time
    • 10.1021/mp300466n 1:CAS:528:DC%2BC3sXotl2ntA%3D%3D
    • Davis AM, Wood DJ (2013) Quantitative structure-activity relationship models that stand the test of time. Mol Pharm 10:1183-1190
    • (2013) Mol Pharm , vol.10 , pp. 1183-1190
    • Davis, A.M.1    Wood, D.J.2
  • 12
    • 84862653390 scopus 로고    scopus 로고
    • AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment
    • 10.1186/1758-2946-3-28
    • Stalring J, Carlsson L, Almeida P, Boyer S (2011) AZOrange - high performance open source machine learning for QSAR modeling in a graphical programming environment. J Cheminform 3:28
    • (2011) J Cheminform , vol.3 , pp. 28
    • Stalring, J.1    Carlsson, L.2    Almeida, P.3    Boyer, S.4
  • 14
    • 33646855259 scopus 로고    scopus 로고
    • Accelrys Ltd, San Diego. California
    • Pipeline Pilot (2011) Accelrys Ltd, San Diego. California
    • (2011) Pipeline Pilot
  • 16
    • 55249098367 scopus 로고    scopus 로고
    • A new hybrid QSAR model for predicting bioconcentration factor (BCF)
    • 10.1016/j.chemosphere.2008.09.033 1:CAS:528:DC%2BD1cXhtlGlsLjL
    • Zhao C, Boriani E, Chana A, Roncaglioni A, Benfenati E (2008) A new hybrid QSAR model for predicting bioconcentration factor (BCF). Chemosphere 73:1701-1707
    • (2008) Chemosphere , vol.73 , pp. 1701-1707
    • Zhao, C.1    Boriani, E.2    Chana, A.3    Roncaglioni, A.4    Benfenati, E.5
  • 17
    • 77955435614 scopus 로고    scopus 로고
    • Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF) in fish
    • 10.1186/1752-153X-4-S1-S1
    • Lombardo A, Roncaglioni A, Boriani E, Milan C, Benfenati E (2010) Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF) in fish. Chem Cent J 4:S1
    • (2010) Chem Cent J , vol.4 , pp. 1
    • Lombardo, A.1    Roncaglioni, A.2    Boriani, E.3    Milan, C.4    Benfenati, E.5
  • 18
    • 77956829814 scopus 로고    scopus 로고
    • The CAESAR project for in silico models for the REACH legislation
    • 10.1186/1752-153X-4-S1-I1
    • Benfenati E (2010) The CAESAR project for in silico models for the REACH legislation. Chem Cent J 4:I1
    • (2010) Chem Cent J , vol.4 , pp. 1
    • Benfenati, E.1
  • 20
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: The new blueprint for data mining
    • Shearer C (2002) The CRISP-DM model: the new blueprint for data mining. J Data Warehous 5:13-22
    • (2002) J Data Warehous , vol.5 , pp. 13-22
    • Shearer, C.1
  • 21
    • 33745859416 scopus 로고    scopus 로고
    • Methods for mining HTS data
    • 10.1016/j.drudis.2006.06.006 1:CAS:528:DC%2BD28XntFSgtr8%3D
    • Harper G, Pickett SD (2006) Methods for mining HTS data. Drug Discovery Today 11:694-699
    • (2006) Drug Discovery Today , vol.11 , pp. 694-699
    • Harper, G.1    Pickett, S.D.2
  • 22
    • 84892439640 scopus 로고    scopus 로고
    • http://www.sencha.com/
  • 23
    • 84892444428 scopus 로고    scopus 로고
    • http://jquery.com
  • 24
    • 84892444252 scopus 로고    scopus 로고
    • http://www.w3.org/TR/xml/
  • 25
    • 84892438449 scopus 로고    scopus 로고
    • http://www.ietf.org/rfc/rfc4627.txt
  • 26
    • 84892443670 scopus 로고    scopus 로고
    • http://www.w3.org/TR/html401
  • 27
    • 84892437825 scopus 로고    scopus 로고
    • http://en.wikipedia.org/wiki/AJAX
  • 28
    • 84892436670 scopus 로고    scopus 로고
    • http://www.w3.org/TR/soap/
  • 29
    • 84892445296 scopus 로고    scopus 로고
    • http://www.w3.org/TR/ws-arch/
  • 30
    • 30144440914 scopus 로고    scopus 로고
    • Receiver operating characteristics curves and related decision measures: A tutorial
    • 10.1016/j.chemolab.2005.05.004 1:CAS:528:DC%2BD28XhsFWqtg%3D%3D
    • Brown CD, Davis HT (2006) Receiver operating characteristics curves and related decision measures: a tutorial. Chemom Intell Lab Syst 80:24-38
    • (2006) Chemom Intell Lab Syst , vol.80 , pp. 24-38
    • Brown, C.D.1    Davis, H.T.2
  • 32
    • 84892432555 scopus 로고    scopus 로고
    • http://www.caesar-project.eu/index.php
  • 33
    • 84892446305 scopus 로고    scopus 로고
    • http://www.oecd.org/document/2/0,3746,en-2649-34379-42926338-1-1-1-1,00. html
  • 34
    • 84876520796 scopus 로고    scopus 로고
    • Time-split cross-validation as a method for estimating the goodness of prospective prediction
    • doi: 10.1021/ci400084k
    • Sheridan RP (2013) Time-split cross-validation as a method for estimating the goodness of prospective prediction. J Chem Inf Model. doi: 10.1021/ci400084k
    • (2013) J Chem Inf Model
    • Sheridan, R.P.1
  • 35
    • 33845995827 scopus 로고    scopus 로고
    • Enhancing the effectiveness of ligand-based virtual screening using data fusion
    • 10.1002/qsar.200610084 1:CAS:528:DC%2BD2sXmsFCjsA%3D%3D
    • Willett P (2006) Enhancing the effectiveness of ligand-based virtual screening using data fusion. QSAR Comb Sci 25:1143-1152
    • (2006) QSAR Comb Sci , vol.25 , pp. 1143-1152
    • Willett, P.1
  • 36
    • 80053295024 scopus 로고    scopus 로고
    • Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient
    • 10.1021/ci200211n 1:CAS:528:DC%2BC3MXhtVWhtLjI
    • Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51:2320-2335
    • (2011) J Chem Inf Model , vol.51 , pp. 2320-2335
    • Chirico, N.1    Gramatica, P.2
  • 37
    • 84861521242 scopus 로고    scopus 로고
    • Comparison of different approaches to define the applicability domain of QSAR models
    • 10.3390/molecules17054791 1:CAS:528:DC%2BC38Xntlehsrs%3D
    • Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R (2012) Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17:4791-4810
    • (2012) Molecules , vol.17 , pp. 4791-4810
    • Sahigara, F.1    Mansouri, K.2    Ballabio, D.3    Mauri, A.4    Consonni, V.5    Todeschini, R.6
  • 38
    • 84859204703 scopus 로고    scopus 로고
    • Three useful dimensions for domain applicability in QSAR models using random forest
    • 10.1021/ci300004n 1:CAS:528:DC%2BC38XjtFWhsL4%3D
    • Sheridan RP (2012) Three useful dimensions for domain applicability in QSAR models using random forest. J Chem Inf Model 52:814-823
    • (2012) J Chem Inf Model , vol.52 , pp. 814-823
    • Sheridan, R.P.1
  • 41
    • 4143122120 scopus 로고    scopus 로고
    • Classification of kinase inhibitors using a Bayesian model
    • 10.1021/jm0303195 1:CAS:528:DC%2BD2cXmt1Sgu78%3D
    • Xia X, Maliski EG, Gallant P, Rogers D (2004) Classification of kinase inhibitors using a Bayesian model. J Med Chem 47:4463-4470
    • (2004) J Med Chem , vol.47 , pp. 4463-4470
    • Xia, X.1    Maliski, E.G.2    Gallant, P.3    Rogers, D.4
  • 47
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • 10.1021/ci100050t 1:CAS:528:DC%2BC3cXlt1Onsbg%3D
    • Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742-754
    • (2010) J Chem Inf Model , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 48
    • 0029404240 scopus 로고
    • Electrotopological state indices for atom types: A novel combination of electronic, topological and valence state information
    • 10.1021/ci00028a014 1:CAS:528:DyaK2MXovF2hsbc%3D
    • Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological and valence state information. J Chem Inf Comput Sci 35:1039-1045
    • (1995) J Chem Inf Comput Sci , vol.35 , pp. 1039-1045
    • Hall, L.H.1    Kier, L.B.2
  • 49
    • 33751499087 scopus 로고
    • The electrotopological state: Structure information at the atomic level for molecular graphs
    • 10.1021/ci00001a012 1:CAS:528:DyaK3MXhtVSmtL8%3D
    • Hall LH, Mohney B, Kier LB (1991) The electrotopological state: structure information at the atomic level for molecular graphs. J Chem Inf Comput Sci 31:76-82
    • (1991) J Chem Inf Comput Sci , vol.31 , pp. 76-82
    • Hall, L.H.1    Mohney, B.2    Kier, L.B.3
  • 50
    • 0000120618 scopus 로고    scopus 로고
    • The e-state as the basis for molecular structure space definition and structure similarity
    • 10.1021/ci990140w 1:CAS:528:DC%2BD3cXitFCqt7k%3D
    • Hall LH, Kier LB (2000) The e-state as the basis for molecular structure space definition and structure similarity. J Chem Inf Comput Sci 40:784-791
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 784-791
    • Hall, L.H.1    Kier, L.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.