메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 866-869

Deep architectures for articulatory inversion

Author keywords

Articulatory inversion; Deep belief network; Deep neural network; Deep regression network; Pretraining

Indexed keywords

ACCURATE PREDICTION; ADJUSTABLE PARAMETERS; ARTICULATORY INVERSION; DEEP BELIEF NETWORKS; DEEP NEURAL NETWORKS; INVERSION ACCURACY; PRE-TRAINING; ROOT MEAN SQUARE ERRORS;

EID: 84878403872     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (70)

References (23)
  • 3
    • 79959851452 scopus 로고    scopus 로고
    • Comparison of HMM and TMDN methods for lip synchronisation
    • Makuhari, Japan, September
    • G. Hofer and K. Richmond, "Comparison of HMM and TMDN methods for lip synchronisation," in Proc. Interspeech, Makuhari, Japan, September 2010, pp. 454-457.
    • (2010) Proc. Interspeech , pp. 454-457
    • Hofer, G.1    Richmond, K.2
  • 4
    • 0038359547 scopus 로고    scopus 로고
    • Modelling the uncertainty in recovering articulation from acoustics
    • K. Richmond, S. King, and P. Taylor, "Modelling the uncertainty in recovering articulation from acoustics," Computer Speech and Language, vol. 17, pp. 153-172, 2003.
    • (2003) Computer Speech and Language , vol.17 , pp. 153-172
    • Richmond, K.1    King, S.2    Taylor, P.3
  • 5
    • 67650153217 scopus 로고    scopus 로고
    • Acoustic-articulatory modeling with the trajectory HMM
    • L. Zhang and S. Renals, "Acoustic-articulatory modeling with the trajectory HMM," IEEE Signal Processing Letters, vol. 15, pp. 245-248, 2008.
    • (2008) IEEE Signal Processing Letters , vol.15 , pp. 245-248
    • Zhang, L.1    Renals, S.2
  • 7
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) IEEE Transactions on Audio, Speech, and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 8
    • 84865778430 scopus 로고    scopus 로고
    • Announcing the electromagnetic articulography (day 1) subset of the mngu0 articulatory corpus
    • K. Richmond, P. Hoole, and S. King, "Announcing the electromagnetic articulography (day 1) subset of the mngu0 articulatory corpus," in Proc. Interspeech, 2011.
    • (2011) Proc. Interspeech
    • Richmond, K.1    Hoole, P.2    King, S.3
  • 9
    • 70450219528 scopus 로고    scopus 로고
    • Preliminary inversion mapping results with a new EMA corpus
    • Brighton, UK, Sep.
    • K. Richmond, "Preliminary inversion mapping results with a new EMA corpus," in Proc. Interspeech, Brighton, UK, Sep. 2009, pp. 2835-2838.
    • (2009) Proc. Interspeech , pp. 2835-2838
    • Richmond, K.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 84858955616 scopus 로고    scopus 로고
    • Study of probabilistic and bottle-neck features in multilingual environment
    • F. Grézl, M. Karafiát, and M. Janda, "Study of probabilistic and bottle-neck features in multilingual environment," in Proc. IEEE ASRU, 2011.
    • (2011) Proc. IEEE ASRU
    • Grézl, F.1    Karafiát, M.2    Janda, M.3
  • 14
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in context-dependent deep neural networks for conversational speech transcription
    • F. Seide, G. Li, X. Chen, and D. Yu, "Feature engineering in context-dependent deep neural networks for conversational speech transcription," in Proc. IEEE ASRU, 2011.
    • (2011) Proc. IEEE ASRU
    • Seide, F.1    Li, G.2    Chen, X.3    Yu, D.4
  • 15
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 16
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 18
    • 44949185845 scopus 로고    scopus 로고
    • A trajectory mixture density network for the acoustic-articulatory inversion mapping
    • Pittsburgh, USA, Sep.
    • K. Richmond, "A trajectory mixture density network for the acoustic-articulatory inversion mapping," in Proc. Interspeech, Pittsburgh, USA, Sep. 2006.
    • (2006) Proc. Interspeech
    • Richmond, K.1
  • 19
    • 0004113976 scopus 로고
    • Mixture density networks
    • Aston University, Tech. Rep. NCRG/94/004
    • C. Bishop, "Mixture density networks," Neural Computing Research Group, Aston University, Tech. Rep. NCRG/94/004, 1994.
    • (1994) Neural Computing Research Group
    • Bishop, C.1
  • 20
    • 0033708106 scopus 로고    scopus 로고
    • Speech parameter generation algorithms for HMM-based speech synthesis
    • Istanbul, Turkey, Jun.
    • K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura, "Speech parameter generation algorithms for HMM-based speech synthesis," in Proc. ICASSP, Istanbul, Turkey, Jun. 2000, pp. 1315-1318.
    • (2000) Proc. ICASSP , pp. 1315-1318
    • Tokuda, K.1    Yoshimura, T.2    Masuko, T.3    Kobayashi, T.4    Kitamura, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.