-
1
-
-
0003598080
-
Fractional Integrals and Derivatives: Theory and applications;
-
Gordon and Breach Science Publisher: New York, NY, USA
-
Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and applications; Gordon and Breach Science Publisher: New York, NY, USA, 1993.
-
(1993)
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
2
-
-
0033888365
-
Frequency-band complex noninteger differentiator: characterization and synthesis.
-
IEEE Trans. Circuits and Systems I Fund.
-
Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M. Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits and Systems I Fund. Theory Appl. 2000, 47, 25-40.
-
(2000)
Theory Appl.
, vol.47
, pp. 25-40
-
-
Oustaloup, A.1
Levron, F.2
Mathieu, B.3
Nanot, F.M.4
-
5
-
-
0032284994
-
Frequency domain identification of a flexible structure with piezoelectric actuators using irrational transfer function models.
-
In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA,
-
Vinagre, B.M.; Feliú, V.; Feliú, J.J. Frequency domain identification of a flexible structure with piezoelectric actuators using irrational transfer function models. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, 16-18 December 1998; 1278-1280.
-
(1998)
-
-
Vinagre, B.M.1
Feliú, V.2
Feliú, J.J.3
-
6
-
-
70350770826
-
Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers.
-
Lewandowski, R.; Chorazyczewski, B. Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 2010, 88, 1-17.
-
(2010)
Comput.Struct.
, vol.88
, pp. 1-17
-
-
Lewandowski, R.1
Chorazyczewski, B.2
-
7
-
-
46249115223
-
Ultracapacitor modelling and control using discrete fractional order state-space model.
-
Dzielinski, A.; Sierociuk, D. Ultracapacitor modelling and control using discrete fractional order state-space model. Acta Montan. Slovaca 2008, 13, 136-145.
-
(2008)
Acta Montan. Slovaca
, vol.13
, pp. 136-145
-
-
Dzielinski, A.1
Sierociuk, D.2
-
8
-
-
33745698038
-
Fractional system identification for lead acid battery state of charge estimation.
-
Sabatier, J.; Aoun, M.; Oustaloup, A.; Grégoire, G.; Ragot, F.; Roy, P. Fractional system identification for lead acid battery state of charge estimation. Signal Process. 2006, 86, 2645-2657.
-
(2006)
Signal Process.
, vol.86
, pp. 2645-2657
-
-
Sabatier, J.1
Aoun, M.2
Oustaloup, A.3
Grégoire, G.4
Ragot, F.5
Roy, P.6
-
9
-
-
84861724090
-
A pair of van der Pol oscillators coupled by fractional derivatives.
-
Suchorsky, M.K.; Rand, R.H. A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dynamics 2012, 69, 313-324.
-
(2012)
Nonlinear Dynamics
, vol.69
, pp. 313-324
-
-
Suchorsky, M.K.1
Rand, R.H.2
-
10
-
-
84922448705
-
Nonlinear dynamics of duffing system with fractional order damping.
-
Cao, J.Y.; Ma, C.B.; Xie, H.; Jiang, Z.D. Nonlinear dynamics of duffing system with fractional order damping. ASME J.Comput. Nonlinear Dyn. 2010, 5, 041012-041018.
-
(2010)
ASME J.Comput. Nonlinear Dyn.
, vol.5
, pp. 041012-041018
-
-
Cao, J.Y.1
Ma, C.B.2
Xie, H.3
Jiang, Z.D.4
-
11
-
-
84878363605
-
A fractional calculus based model for the simulation of an outbreak of dengue fever.
-
Diethelm, K. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 2013, 71, 613-619.
-
(2013)
Nonlinear Dyn.
, vol.71
, pp. 613-619
-
-
Diethelm, K.1
-
12
-
-
84859341134
-
Vibrational resonance in Duffing systems with fractional-order damping.
-
013112:1-013112:9
-
Yang, J.H.; Zhu, H. Vibrational resonance in Duffing systems with fractional-order damping. Chaos 2012, 22, 013112:1-013112:9.
-
(2012)
Chaos
, vol.22
-
-
Yang, J.H.1
Zhu, H.2
-
13
-
-
77952861634
-
A study on modified Szabo's wave equation modeling of frequency-dependent dissipation in ultrasonic medical imaging.
-
Chen, W.; Zhang, X.D.; Cai, X. A study on modified Szabo's wave equation modeling of frequency-dependent dissipation in ultrasonic medical imaging. Phys. Scripta 2009, T136, 014014.
-
(2009)
Phys. Scripta
, vol.136
, pp. 014014
-
-
Chen, W.1
Zhang, X.D.2
Cai, X.3
-
15
-
-
67649494324
-
Entropies based on fractional calculus.
-
Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516-2519.
-
(2009)
Phys. Lett. A
, vol.373
, pp. 2516-2519
-
-
Ubriaco, M.R.1
-
16
-
-
84867961487
-
Entropy analysis of integer and fractional dynamical systems.
-
Machado, J.A.T. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010, 62, 371-378.
-
(2010)
Nonlinear Dyn.
, vol.62
, pp. 371-378
-
-
Machado, J.A.T.1
-
17
-
-
0031622098
-
Fractional diffusion and entropy production.
-
Hoffmann, K.H.; Essex, C.; Schulzky, C. Fractional diffusion and entropy production. J. Non-Equilib. Thermodyn. 1998, 23, 166-175.
-
(1998)
J. Non-Equilib. Thermodyn.
, vol.23
, pp. 166-175
-
-
Hoffmann, K.H.1
Essex, C.2
Schulzky, C.3
-
18
-
-
0034274113
-
Tsallis and Rényi entropies in fractional diffusion and entropy production.
-
Essex, C.; Schulzky, C.; Franz, A.; Hoffmann, K.H. Tsallis and Rényi entropies in fractional diffusion and entropy production. Phys. Stat. Mech. Appl. 2000, 284, 299-308.
-
(2000)
Phys. Stat. Mech. Appl.
, vol.284
, pp. 299-308
-
-
Essex, C.1
Schulzky, C.2
Franz, A.3
Hoffmann, K.H.4
-
19
-
-
70349750472
-
The super diffusion entropy production paradox in the space-fractional case for extended entropies.
-
Prehl, J.; Essex, C.; Hoffmann, K.H. The super diffusion entropy production paradox in the space-fractional case for extended entropies. Phys. Stat. Mech. Appl. 2010, 389, 215-224.
-
(2010)
Phys. Stat. Mech. Appl.
, vol.389
, pp. 215-224
-
-
Prehl, J.1
Essex, C.2
Hoffmann, K.H.3
-
20
-
-
46949084674
-
Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum hall effect states.
-
Li, H.; Haldane, F.D.M. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum hall effect states. Phys. Rev. Lett. 2008, 101, 010504.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 010504
-
-
Li, H.1
Haldane, F.D.M.2
-
21
-
-
85065556461
-
Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results.
-
Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. J. Appl. Mech. Rev. 2010, 63, 1-52.
-
(2010)
J. Appl. Mech. Rev.
, vol.63
, pp. 1-52
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
22
-
-
78650513186
-
New Trends in Nanotechnology and Fractional Calculus Applications;
-
Springer-Verlag: New York, NY, USA,
-
Baleanu, D.; Guvenc, Z.B.; Machado, J.A.T. New Trends in Nanotechnology and Fractional Calculus Applications; Springer-Verlag: New York, NY, USA, 2010.
-
(2010)
-
-
Baleanu, D.1
Guvenc, Z.B.2
Machado, J.A.T.3
-
23
-
-
84885710343
-
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering;
-
Springer-Verlag: New York, NY, USA,
-
Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer-Verlag: New York, NY, USA, 2007.
-
(2007)
-
-
Sabatier, J.1
Agrawal, O.P.2
Machado, J.A.T.3
-
24
-
-
0141927230
-
Fractional differentiation for edge detection.
-
Mathieu, B.; Melchior, P.; Oustaloup, A.; Ceyral, C. Fractional differentiation for edge detection. Signal Process. 2003, 83, 2421-2432.
-
(2003)
Signal Process.
, vol.83
, pp. 2421-2432
-
-
Mathieu, B.1
Melchior, P.2
Oustaloup, A.3
Ceyral, C.4
-
25
-
-
0003994006
-
Fractals in the Physical Sciences;
-
St. Martin's Press: New York, NY, USA,
-
Takayasu, H. Fractals in the Physical Sciences; St. Martin's Press: New York, NY, USA, 1990.
-
(1990)
-
-
Takayasu, H.1
-
26
-
-
0003935762
-
Fractal Image Compression: Theory and Application;
-
Springer-Verlag: New York, NY, USA,
-
Fisher, Y. Fractal Image Compression: Theory and Application; Springer-Verlag: New York, NY, USA, 1995.
-
(1995)
-
-
Fisher, Y.1
-
27
-
-
79957444603
-
Identification of a thermal system using continuous linear parameter-varying fractional modeling.
-
Gabano, J.D.; Poinot, T.; Kanoun, H. Identification of a thermal system using continuous linear parameter-varying fractional modeling. Control Theory Appl. 2011, 5, 889-899.
-
(2011)
Control Theory Appl.
, vol.5
, pp. 889-899
-
-
Gabano, J.D.1
Poinot, T.2
Kanoun, H.3
-
28
-
-
84878361586
-
Flatness control for linear fractional MIMO systems: thermal application.
-
In Proceedings of 3rd IFAC Workshop on Fractional Differentiation and Its Application, Ankara, TUR
-
Victor, S.; Melchior, P.; Nelson-Gruel, D.; Oustaloup, A. Flatness control for linear fractional MIMO systems: thermal application. In Proceedings of 3rd IFAC Workshop on Fractional Differentiation and Its Application, Ankara, Turkey, 5-7 November 2008; pp. 5-7.
-
(2008)
, pp. 5-7
-
-
Victor, S.1
Melchior, P.2
Nelson-Gruel, D.3
Oustaloup, A.4
-
29
-
-
79551512124
-
Variable time-delay estimation for anesthesia control during intensive care.
-
Ionescu, C.-M.; Hodrea, R.; de Keyser, R. Variable time-delay estimation for anesthesia control during intensive care. IEEE Trans. Biomed. Eng. 2011, 58, 363-369.
-
(2011)
IEEE Trans. Biomed. Eng.
, vol.58
, pp. 363-369
-
-
Ionescu, C.-M.1
Hodrea, R.2
de Keyser, R.3
-
30
-
-
35348866111
-
Improvement of the muscle fractional multimodel for low-rate stimulation.
-
Sommacal, L.; Melchior, P.; Dossat, A.; Petit, J.; Cabelguen, J.-M.; Oustaloup, A.; Ijspeert, A.J. Improvement of the muscle fractional multimodel for low-rate stimulation. Biomed. Signal Process. Control 2007, 2, 226-233.
-
(2007)
Biomed. Signal Process. Control
, vol.2
, pp. 226-233
-
-
Sommacal, L.1
Melchior, P.2
Dossat, A.3
Petit, J.4
Cabelguen, J.-M.5
Oustaloup, A.6
Ijspeert, A.J.7
-
31
-
-
52349089366
-
Fractional Multi-Models of the Gastrocnemius Frog Muscle.
-
Sommacal, L.; Melchior, J.; Cabelguen, J.-M.; Oustaloup, A.; Ijspeert, A.J. Fractional Multi-Models of the Gastrocnemius Frog Muscle. J. Vib. Control 2008, 14, 1415-1430.
-
(2008)
J. Vib. Control
, vol.14
, pp. 1415-1430
-
-
Sommacal, L.1
Melchior, J.2
Cabelguen, J.-M.3
Oustaloup, A.4
Ijspeert, A.J.5
-
32
-
-
0001848898
-
From fractal robustness to the Crone control.
-
Oustaloup, A.; Sabatier, J.; Lanusse, P. From fractal robustness to the Crone control. Fract. Calc. Appl. Anal. 1999, 2, 1-30.
-
(1999)
Fract. Calc. Appl. Anal.
, vol.2
, pp. 1-30
-
-
Oustaloup, A.1
Sabatier, J.2
Lanusse, P.3
-
33
-
-
0001805106
-
Discrete-time fractional-order controllers.
-
Machado, J.A.T. Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 2001, 4, 47-66.
-
(2001)
Fract. Calc. Appl. Anal.
, vol.4
, pp. 47-66
-
-
Machado, J.A.T.1
-
34
-
-
41549148741
-
Tuning and auto-tuning of fractional order controllers for industry applications.
-
Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y.Q. Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 2008, 16, 798-812.
-
(2008)
Control Eng. Pract.
, vol.16
, pp. 798-812
-
-
Monje, C.A.1
Vinagre, B.M.2
Feliu, V.3
Chen, Y.Q.4
-
35
-
-
33745872964
-
Robust stability check of fractional order linear time invariant systems with interval uncertainties.
-
Chen, Y.Q.; Ahn, H.S.; Podlubny, I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process. 2006, 86, 2611-2618.
-
(2006)
Signal Process.
, vol.86
, pp. 2611-2618
-
-
Chen, Y.Q.1
Ahn, H.S.2
Podlubny, I.3
-
36
-
-
84878360250
-
Outer synchronization between fractional-order complex networks: A non-fragile observer-based control scheme.
-
Zhao, M.C.; Wang, J.W. Outer synchronization between fractional-order complex networks: A non-fragile observer-based control scheme. Entropy 2013, 15, 1357-1374.
-
(2013)
Entropy
, vol.15
, pp. 1357-1374
-
-
Zhao, M.C.1
Wang, J.W.2
-
37
-
-
33745932867
-
Time domain design of fractional differ integrators using least-squares.
-
Barbosa, R.S.; Machado, J.A.T.; Silva, M.F. Time domain design of fractional differ integrators using least-squares. Signal Process. 2006, 86, 2567-2581.
-
(2006)
Signal Process.
, vol.86
, pp. 2567-2581
-
-
Barbosa, R.S.1
Machado, J.A.T.2
Silva, M.F.3
-
38
-
-
0141892682
-
Fractional signal processing and applications.
-
Ortigueira, M.D.; Machado, J.A.T. Fractional signal processing and applications. Signal Process. 2003, 83, 2285-2286.
-
(2003)
Signal Process.
, vol.83
, pp. 2285-2286
-
-
Ortigueira, M.D.1
Machado, J.A.T.2
-
39
-
-
0141961681
-
Consideration of obstacle danger level in path planning using A and fast-marching optimisation: Comparative study.
-
Melchior, P.; Orsoni, B.; Lavialle, O.; Poty, A; Oustaloup, A. Consideration of obstacle danger level in path planning using A and fast-marching optimisation: Comparative study. Signal Process. 2003, 83, 2387-2396.
-
(2003)
Signal Process.
, vol.83
, pp. 2387-2396
-
-
Melchior, P.1
Orsoni, B.2
Lavialle, O.3
Poty, A.4
Oustaloup, A.5
-
40
-
-
84878364553
-
Design of centralized CRONE controller combined with MIMO-QFT approach applied to non-square multivariable systems.
-
Yousfi, N.; Melchior, P.; Rekik, C.; Derbel, N.; Oustaloup, A. Design of centralized CRONE controller combined with MIMO-QFT approach applied to non-square multivariable systems. Int. J. Comput. Appl. 2012, 45, 6-14.
-
(2012)
Int. J. Comput. Appl.
, vol.45
, pp. 6-14
-
-
Yousfi, N.1
Melchior, P.2
Rekik, C.3
Derbel, N.4
Oustaloup, A.5
-
41
-
-
84878359099
-
Path tracking design by fractional prefilter using a combined QFT/H 8 design for TDOF uncertain feedback systems.
-
Yousfi, N.; Melchior, P.; Rekik, C.; Derbel, N.; Oustaloup, A. Path tracking design by fractional prefilter using a combined QFT/H 8 design for TDOF uncertain feedback systems. Nonlinear Dyn. 2013, 71, 701-712.
-
(2013)
Nonlinear Dyn.
, vol.71
, pp. 701-712
-
-
Yousfi, N.1
Melchior, P.2
Rekik, C.3
Derbel, N.4
Oustaloup, A.5
-
43
-
-
15544381811
-
Fractional order control of a hexapod robot.
-
Silva, M.F.; Machado, J.A.T.; Lopes, A.M. Fractional order control of a hexapod robot. Nonlinear Dyn. 2004, 38, 417-433.
-
(2004)
Nonlinear Dyn.
, vol.38
, pp. 417-433
-
-
Silva, M.F.1
Machado, J.A.T.2
Lopes, A.M.3
-
44
-
-
44949282247
-
Damping description involving fractional operators.
-
Gaul, L.; Klein, P.; Kemple, S. Damping description involving fractional operators. Mech. Syst. Signal Process. 1991, 5, 81-88.
-
(1991)
Mech. Syst. Signal Process.
, vol.5
, pp. 81-88
-
-
Gaul, L.1
Klein, P.2
Kemple, S.3
-
45
-
-
76849098226
-
Lead-acid battery fractional modeling associated to a model validation method for resistance and cranking capability estimation.
-
Cugnet, M.; Sabatier, J.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A.; Tarascon, J.-M. Lead-acid battery fractional modeling associated to a model validation method for resistance and cranking capability estimation. IEEE Trans. Ind. Electron. 2010, 57, 909-917.
-
(2010)
IEEE Trans. Ind. Electron.
, vol.57
, pp. 909-917
-
-
Cugnet, M.1
Sabatier, J.2
Laruelle, S.3
Grugeon, S.4
Sahut, B.5
Oustaloup, A.6
Tarascon, J.-M.7
-
46
-
-
70449111273
-
A fractional order model for lead-acid battery crankability estimation. Commun.
-
Sabatier J.; Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A.; Tarascon, J.M.A fractional order model for lead-acid battery crankability estimation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1308-1317.
-
(2010)
Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 1308-1317
-
-
Sabatier, J.1
Cugnet, M.2
Laruelle, S.3
Grugeon, S.4
Sahut, B.5
Oustaloup, A.6
Tarascon, J.M.7
-
47
-
-
71949100439
-
Fractional Newtonian mechanics.
-
Baleanu, D.; Golmankhaneh, A.K.; Nigmatulli, R.; Golmankhaneh, A.K. Fractional Newtonian mechanics. Cent. Eur. J. Phys. 2010, 8, 120-125.
-
(2010)
Cent. Eur. J. Phys.
, vol.8
, pp. 120-125
-
-
Baleanu, D.1
Golmankhaneh, A.K.2
Nigmatulli, R.3
Golmankhaneh, A.K.4
-
48
-
-
70349224466
-
Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations.
-
Herallah, M.A.E.; Baleanu, D. Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 2009, 58, 385-391.
-
(2009)
Nonlinear Dyn.
, vol.58
, pp. 385-391
-
-
Herallah, M.A.E.1
Baleanu, D.2
-
49
-
-
68649098514
-
Variable-order fractional differential operators in anomalous diffusion modeling.
-
Sun, H.G.; Chen, W.; Chen, Y.Q. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. Stat. Mech. Appl. 2009, 388, 4586-4592.
-
(2009)
Phys. Stat. Mech. Appl.
, vol.388
, pp. 4586-4592
-
-
Sun, H.G.1
Chen, W.2
Chen, Y.Q.3
-
50
-
-
76449113714
-
Fractional diffusion equations by the Kansa method.
-
Chen, W.; Ye, L.J.; Sun. H.G. Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 2010, 59, 1614-1620.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1614-1620
-
-
Chen, W.1
Ye, L.J.2
Sun, H.G.3
-
51
-
-
1842832060
-
Chaos in Chen's system with a fractional order.
-
Li, C.P.; Peng, G.J. Chaos in Chen's system with a fractional order. Chaos Soliton. Fract. 2007, 32, 443-450.
-
(2007)
Chaos Soliton. Fract.
, vol.32
, pp. 443-450
-
-
Li, C.P.1
Peng, G.J.2
-
52
-
-
33749563875
-
On chaos synchronization of fractional differential equations.
-
Yan, J.P; Li, C.P. On chaos synchronization of fractional differential equations. Chaos Soliton. Fract. 2007, 32, 725-735.
-
(2007)
Chaos Soliton. Fract.
, vol.32
, pp. 725-735
-
-
Yan, J.P.1
Li, C.P.2
-
53
-
-
15544365138
-
Identification of fractional systems using an output-error technique.
-
Poinot, T.; Trigeassou, J.-C. Identification of fractional systems using an output-error technique. Nonlinear Dyn. 2004, 38, 133-154.
-
(2004)
Nonlinear Dyn.
, vol.38
, pp. 133-154
-
-
Poinot, T.1
Trigeassou, J.-C.2
-
54
-
-
33646716351
-
Non integer model from modal decomposition for time domain system identification.
-
21-23 June 2000 CA, USA
-
Cois, O.; Oustaloup A.; Battaglia, E.; Battaglia, J.-L. Non integer model from modal decomposition for time domain system identification. In Proceedings of the 12th IFAC Symposium on System Identification, Santa Barbara, CA, USA, 21-23 June 2000; pp. 989-994.
-
In Proceedings of the 12th IFAC Symposium on System Identification, Santa Barbara,
, pp. 989-994
-
-
Cois, O.1
Oustaloup, A.2
Battaglia, E.3
Battaglia, J.-L.4
-
55
-
-
47549092440
-
Identification of non-integer-order systems in frequency domain.
-
Lin, J.; Poinot, T.; Li, S.T.; Trigeassou, J.-C. Identification of non-integer-order systems in frequency domain. J. Control Theory Appl. 2008, 25, 517-520.
-
(2008)
J. Control Theory Appl.
, vol.25
, pp. 517-520
-
-
Lin, J.1
Poinot, T.2
Li, S.T.3
Trigeassou, J.-C.4
-
56
-
-
79957493884
-
Identifying digital and fractional transfer functions from a frequency response.
-
Valério, D.; Costa, J.S.D. Identifying digital and fractional transfer functions from a frequency response. Int. J. Control 2011, 84, 445-457.
-
(2011)
Int. J. Control
, vol.84
, pp. 445-457
-
-
Valério, D.1
Costa, J.S.D.2
-
57
-
-
0141996370
-
A method for modeling and simulation of fractional systems.
-
Poinot, T.; Trigeassou, J.-C. A method for modeling and simulation of fractional systems. Signal Process. 2003, 83, 2319-2333.
-
(2003)
Signal Process.
, vol.83
, pp. 2319-2333
-
-
Poinot, T.1
Trigeassou, J.-C.2
-
58
-
-
0141892685
-
Fractional-order system identification based on continuous order-distributions.
-
Hartley, T.T.; Lorenzo, C.F. Fractional-order system identification based on continuous order-distributions. Signal Process. 2003, 83, 2287-2300.
-
(2003)
Signal Process.
, vol.83
, pp. 2287-2300
-
-
Hartley, T.T.1
Lorenzo, C.F.2
-
59
-
-
0022152347
-
Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes.
-
Nyikos, L.; Pajkossy, T. Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 1985, 30, 1533-1540.
-
(1985)
Electrochim. Acta
, vol.30
, pp. 1533-1540
-
-
Nyikos, L.1
Pajkossy, T.2
-
60
-
-
84878375755
-
Optimization method of parameter identification
-
1st ed.; Zhao, X.G., Yu, X.H., Eds.; National Defense Industry Press: Beijing, China
-
Liu, D.H.; Cai, Y.W.; Su, Y.Z.; Yi, Y.X. Optimization method of parameter identification. In System Identification and Its Application, 1st ed.; Zhao, X.G., Yu, X.H., Eds.; National Defense Industry Press: Beijing, China, 2010; Volume 1, pp. 101-106.
-
(2010)
In System Identification and Its Application
, vol.1
, pp. 101-106
-
-
Liu, D.H.1
Cai, Y.W.2
Su, Y.Z.3
Yi, Y.X.4
-
61
-
-
34250092221
-
Genetic Algorithms and Machine Learning
-
Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95-99.
-
(1988)
Mach. Learn.
, vol.3
, pp. 95-99
-
-
Goldberg, D.E.1
Holland, J.H.2
-
62
-
-
0022559425
-
Optimization of control parameters for genetic algorithms
-
Grefenstette, J.J. Optimization of control parameters for genetic algorithms. Syst. IEEE Trans. Man Cybern. 1986, 16, 122-128.
-
(1986)
Syst. IEEE Trans. Man Cybern.
, vol.16
, pp. 122-128
-
-
Grefenstette, J.J.1
-
63
-
-
0030707244
-
The gambler's ruin problem, genetic algorithms, and the sizing of populations. In Proceedings of the IEEE International Conference on Evolutionary Computation
-
MI, USA, 13-16 April 1997
-
Harik, G.; Cantú-Paz, E.; Goldberg, D.E.; Miller, B.L. The gambler's ruin problem, genetic algorithms, and the sizing of populations. In Proceedings of the IEEE International Conference on Evolutionary Computation, Ann Arbor, MI, USA, 13-16 April 1997; pp. 231-253.
-
Ann Arbor
, pp. 231-253
-
-
Harik, G.1
Cantú-Paz, E.2
Goldberg, D.E.3
Miller, B.L.4
-
64
-
-
21444438033
-
Genetic algorithms, selection schemes, and the varying effects of noise
-
Miller, B.L.; Goldberg, D.E. Genetic algorithms, selection schemes, and the varying effects of noise. Evol. Comput.1996, 4, 113-131.
-
(1996)
Evol. Comput.
, vol.4
, pp. 113-131
-
-
Miller, B.L.1
Goldberg, D.E.2
-
65
-
-
25144437471
-
Time-domain implementati on of fractional order controllers
-
Valerio, D.; Costa, J.S.D. Time-domain implementati on of fractional order controllers. IEEE Proc. Control Theory Appl. 2005, 152,539-552.
-
(2005)
IEEE Proc. Control Theory Appl.
, vol.152
, pp. 539-552
-
-
Valerio, D.1
Costa, J.S.D.2
-
66
-
-
0003808336
-
Nonlinear System Identification: Input-Output Modeling Approach
-
Springer-Verlag: New York, NY, USA
-
Haber, R.; Keviczky, L. Nonlinear System Identification: Input-Output Modeling Approach; Springer-Verlag: New York, NY, USA, 1999.
-
(1999)
-
-
Haber, R.1
Keviczky, L.2
|