-
1
-
-
33645505792
-
Convexity, classification, and risk bounds
-
[169]
-
Bartlett, P., Jordan, M., and McAuliffe, J. (2006), ''Convexity, Classification, and Risk Bounds,'' Journal of the American Statistical Association, 101, 138-156. [169]
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 138-156
-
-
Bartlett, P.1
Jordan, M.2
McAuliffe, J.3
-
2
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA: ACM Press, [166]
-
Boser, B., Guyon, I., and Vapnik, V. N. (1992), ''A Training Algorithm for Optimal Margin Classifiers,'' The Fifth Annual Conference on Computational Learning Theory, Pittsburgh, PA: ACM Press, pp. 142-152. [166]
-
(1992)
The Fifth Annual Conference On Computational Learning Theory
, pp. 142-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.N.3
-
3
-
-
34249753618
-
Support-Vector networks
-
[166]
-
Cortes, C., and Vapnik, V. N. (1995), ''Support-Vector Networks,'' Machine Learning, 20, 273-279. [166]
-
(1995)
Machine Learning
, vol.20
, pp. 273-279
-
-
Cortes, C.1
Vapnik, V.N.2
-
5
-
-
0031211090
-
A decision theoretic generalization of on-line learning and an application to boosting
-
[166-168]
-
Freund, Y., and Schapire, R. (1997), ''A Decision Theoretic Generalization of On-Line Learning and an Application to Boosting,'' Journal of Computer and System Sciences, 55, 119-139. [166-168]
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
6
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
[166-168]
-
Friedman, J. H., Hastie, T., and Tibshirani, R. (2000), ''Additive Logistic Regression: A Statistical View of Boosting,'' The Annals of Statistics, 28, 337-407. [166-168]
-
(2000)
The Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
7
-
-
0003684449
-
-
New York: Springer-Verlag. [166]
-
Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, New York: Springer-Verlag. [166]
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
8
-
-
0034343415
-
Smoothing spline anova models for large data sets with bernoulli observations and the randomized gacv
-
[166,167]
-
Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R., and Klein, B. (2000), ''Smoothing Spline ANOVA Models for Large Data Sets With Bernoulli Observations and the Randomized GACV,'' The Annals of Statistics, 28, 1570-1600. [166,167]
-
(2000)
The Annals of Statistics
, vol.28
, pp. 1570-1600
-
-
Lin, X.1
Wahba, G.2
Xiang, D.3
Gao, F.4
Klein, R.5
Klein, B.6
-
9
-
-
0036258405
-
Support vector machines and the bayes rule in classification
-
[169]
-
Lin, Y. (2002), ''Support Vector Machines and the Bayes Rule in Classification,'' Data Mining and Knowledge Discovery, 6, 259-275. [169]
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
10
-
-
2342495357
-
A note on margin-based loss functions in classification
-
[169]
-
Lin, Y. (2004), ''A Note on Margin-Based Loss Functions in Classification,'' Statistics & Probability Letters, 68, 73-82. [169]
-
(2004)
Statistics & Probability Letters
, vol.68
, pp. 73-82
-
-
Lin, Y.1
-
11
-
-
33745638149
-
Multicategory ψ-Learning
-
[167]
-
Liu, Y., and Shen, X. (2006), ''Multicategory ψ-Learning,'' Journal of the American Statistical Association, 101, 500-509. [167]
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 500-509
-
-
Liu, Y.1
Shen, X.2
-
12
-
-
54949118365
-
Statistical significance of clustering for high dimension low sample size data
-
[175]
-
Liu, Y., Hayes, D. N., Nobel, A., and Marron, J. S. (2008), ''Statistical Significance of Clustering for High Dimension Low Sample Size Data,'' Journal of the American Statistical Association, 103, 1281-1293. [175]
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 1281-1293
-
-
Liu, Y.1
Hayes, D.N.2
Nobel, A.3
Marron, J.S.4
-
13
-
-
38349049321
-
Distance weighted discrimination
-
[166-168]
-
Marron, J. S., Todd, M., and Ahn, J. (2007), ''Distance Weighted Discrimination,'' Journal of the American Statistical Association, 102, 1267-1271. [166-168]
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 1267-1271
-
-
Marron, J.S.1
Todd, M.2
Ahn, J.3
-
15
-
-
77952561415
-
Weighted distance weighted discrimination and its asymptotic properties
-
Qiao, X., Zhang, H. H., Liu, Y., Todd, M. J., and Marron, J. S. (2010), ''Weighted Distance Weighted Discrimination and Its Asymptotic Properties,'' Journal of the American Statistical Association, 105, 401-414. [168]
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 401-414
-
-
Qiao, X.1
Zhang, H.H.2
Liu, Y.3
Todd, M.J.4
Marron, J.S.5
-
17
-
-
0242679446
-
On ψ-Learning
-
Shen, X., Tseng, G. C., Zhang, X., andWong, W. H. (2003), ''On ψ-Learning,'' Journal of the American Statistical Association, 98, 724-734. [167]
-
(2003)
Journal of the American Statistical Association
, vol.98
, pp. 724-734
-
-
Shen, X.1
Tseng, G.C.2
Zhang, X.3
Andwong, W.H.4
-
18
-
-
26944489606
-
On the consistency of multiclass lassificationmethods
-
Bertinoro, Italy: Springer, [168]
-
Tewari, A., and Bartlett, P. (2005), ''On the Consistency of Multiclass lassificationMethods,'' in Proceedings of the 18th Annual Conference on Learning Theory, Vol. 3559, Bertinoro, Italy: Springer, pp. 143-157. [168]
-
(2005)
Proceedings of the 18th Annual Conference On Learning Theory
, vol.3559
, pp. 143-157
-
-
Tewari, A.1
Bartlett, P.2
-
20
-
-
0001873883
-
Support vector machines, reproducing kernel hilbert spaces, and randomized gacv
-
eds. B. Schölkopf, C. J. C. Burges, and A. J. Smola, Cambridge, MA: MIT Press, [166,167]
-
Wahba, G. (1998), ''Support Vector Machines, Reproducing Kernel Hilbert Spaces, and Randomized GACV,'' in: Advances in Kernel Methods: Support Vector Learning, eds. B. Schölkopf, C. J. C. Burges, and A. J. Smola, Cambridge, MA: MIT Press, pp. 125-143. [166,167]
-
(1998)
Advances In Kernel Methods: Support Vector Learning
, pp. 125-143
-
-
Wahba, G.1
-
21
-
-
0037168506
-
Soft and hard classification by reproducing kernel hilbert space methods
-
[166]
-
Wahba, G. (2002), ''Soft and Hard Classification by Reproducing Kernel Hilbert Space Methods,'' Proceedings of the National Academy of Sciences, 99, 16524-16530. [166]
-
(2002)
Proceedings of the National Academy of Sciences
, vol.99
, pp. 16524-16530
-
-
Wahba, G.1
-
22
-
-
40249094631
-
Probability estimation for large-margin classifiers
-
[167,169,173]
-
Wang, J., Shen, X., and Liu, Y. (2008), ''Probability Estimation for Large-Margin Classifiers,'' Biometrika, 95, 149-167. [167,169,173]
-
(2008)
Biometrika
, vol.95
, pp. 149-167
-
-
Wang, J.1
Shen, X.2
Liu, Y.3
-
23
-
-
35348869458
-
Robust truncated-hinge-loss support vector machines
-
[167]
-
Wu, Y., and Liu, Y. (2007), ''Robust Truncated-Hinge-Loss Support Vector Machines,'' Journal of the American Statistical Association, 102, 974-983. [167]
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 974-983
-
-
Wu, Y.1
Liu, Y.2
-
24
-
-
26944483874
-
Statistical analysis of some multi-category large margin classification methods
-
[168]
-
Zhang, T. (2004), ''Statistical Analysis of Some Multi-Category Large Margin Classification Methods,'' Journal of Machine Learning Research, 5, 1225-1251. [168]
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1225-1251
-
-
Zhang, T.1
-
25
-
-
15944424353
-
Kernel logistic regression and the import vector machine
-
[167]
-
Zhu, J., and Hastie, T. (2005), ''Kernel Logistic Regression and the Import Vector Machine,'' Journal of Computational and Graphical Statistics, 14, 185-205. [167]
-
(2005)
Journal of Computational and Graphical Statistics
, vol.14
, pp. 185-205
-
-
Zhu, J.1
Hastie, T.2
|