메뉴 건너뛰기




Volumn 40, Issue 13, 2013, Pages 5402-5412

Feature generation using genetic programming with comparative partner selection for diabetes classification

Author keywords

Comparative partner selection; Genetic programming; Pima Indian diabetes

Indexed keywords

DIAGNOSIS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; NEAREST NEIGHBOR SEARCH; PROBABILITY DISTRIBUTIONS; SUPPORT VECTOR MACHINES;

EID: 84878280386     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.04.003     Document Type: Article
Times cited : (87)

References (34)
  • 3
    • 0035247432 scopus 로고    scopus 로고
    • A comparison of linear genetic programming and neural networks in medical data mining
    • Brameier, M., & Banzhaf, W. (2001). A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation, 5, 1726.
    • (2001) IEEE Transactions on Evolutionary Computation , vol.5 , pp. 1726
    • Brameier, M.1    Banzhaf, W.2
  • 5
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3), 131-156.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 6
    • 57149142645 scopus 로고    scopus 로고
    • Binary string fitness characterization and comparative partner selection in genetic programming
    • Day, P., & Nandi, A. K. (2008). Binary string fitness characterization and comparative partner selection in genetic programming. IEEE Transactions on Evolutionary Computation, 12, 724-735.
    • (2008) IEEE Transactions on Evolutionary Computation , vol.12 , pp. 724-735
    • Day, P.1    Nandi, A.K.2
  • 10
    • 68249108418 scopus 로고    scopus 로고
    • An interpretable fuzzy rule-based classification methodology for medical diagnosis
    • Gadaras, I., & Mikhailov, L. (2009). An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artificial Intelligence in Medicine, 47, 25-41.
    • (2009) Artificial Intelligence in Medicine , vol.47 , pp. 25-41
    • Gadaras, I.1    Mikhailov, L.2
  • 12
    • 33749056403 scopus 로고    scopus 로고
    • Breast cancer diagnosis using genetic programming generated feature
    • DOI 10.1109/MLSP.2005.1532902, 1532902, 2005 IEEE Workshop on Machine Learning for Signal Processing
    • Guo, H., & Nandi, A. K. (2005). Breast cancer diagnosis using genetic programming generated feature. In Proceedings of IEEE workshop on machine learning for signal processing (MLSP) (pp. 215-220). (Pubitemid 44462007)
    • (2005) 2005 IEEE Workshop on Machine Learning for Signal Processing , pp. 215-220
    • Guo, H.1    Nandi, A.K.2
  • 14
    • 33244460050 scopus 로고    scopus 로고
    • Breast cancer diagnosis using genetic programming generated feature
    • DOI 10.1016/j.patcog.2005.10.001, PII S0031320305003511
    • Guo, H., & Nandi, A. K. (2006). Breast cancer diagnosis using genetic programming generated feature. Pattern Recognition, 39, 980-987. (Pubitemid 43276110)
    • (2006) Pattern Recognition , vol.39 , Issue.5 , pp. 980-987
    • Guo, H.1    Nandi, A.K.2
  • 18
    • 77957103583 scopus 로고    scopus 로고
    • Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases
    • Lekkas, S., & Mikhailov, L. (2010). Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artificial Intelligence in Medicine, 50, 117-126.
    • (2010) Artificial Intelligence in Medicine , vol.50 , pp. 117-126
    • Lekkas, S.1    Mikhailov, L.2
  • 19
    • 36148943944 scopus 로고    scopus 로고
    • Classifier design with feature selection and feature extraction using layered genetic programming
    • Lin, J. Y., Ke, H. R., Chien, B. C., & Yang, W. P. (2008). Classifier design with feature selection and feature extraction using layered genetic programming. Expert Systems with Applications, 34, 1384-1393.
    • (2008) Expert Systems with Applications , vol.34 , pp. 1384-1393
    • Lin, J.Y.1    Ke, H.R.2    Chien, B.C.3    Yang, W.P.4
  • 20
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • Mao, K. Z. (2004). Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions Systems, Man, and Cybernetics - Part B, 34, 60-67.
    • (2004) IEEE Transactions Systems, Man, and Cybernetics - Part B , vol.34 , pp. 60-67
    • Mao, K.Z.1
  • 23
    • 33746947798 scopus 로고    scopus 로고
    • Classification of breast masses in mammograms using genetic programming and feature selection
    • DOI 10.1007/s11517-006-0077-6
    • Nandi, R. J., Nandi, A. K., Rangayyan, R. M., & Scutt, D. (2006). Classification of breast masses in mammograms using genetic programming and feature selection. Medical and Biological Engineering and Computing, 44(8), 683-694. (Pubitemid 44203439)
    • (2006) Medical and Biological Engineering and Computing , vol.44 , Issue.8 , pp. 683-694
    • Nandi, R.J.1    Nandi, A.K.2    Rangayyan, R.M.3    Scutt, D.4
  • 24
    • 34248177183 scopus 로고    scopus 로고
    • The problem of disguised missing data
    • Pearson, R. K. (2006). The problem of disguised missing data. SIGKDD Explorations Newsletter, 8, 83-92.
    • (2006) SIGKDD Explorations Newsletter , vol.8 , pp. 83-92
    • Pearson, R.K.1
  • 25
    • 34249285900 scopus 로고    scopus 로고
    • An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
    • DOI 10.1016/j.dsp.2006.09.005, PII S1051200406001370
    • Polat, K., & Gunes, S. (2007). An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital Signal Processing, 17, 702-710. (Pubitemid 46819049)
    • (2007) Digital Signal Processing: A Review Journal , vol.17 , Issue.4 , pp. 702-710
    • Polat, K.1    Gunes, S.2
  • 26
    • 34248592215 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
    • Polat, K., Gunes, S., & Arslan, A. (2008). A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine. Expert Systems with Applications, 34(1), 214221.
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 214221
    • Polat, K.1    Gunes, S.2    Arslan, A.3
  • 28
    • 0031140388 scopus 로고    scopus 로고
    • Neural-network feature selector
    • PII S1045922797027628
    • Setiono, R., & Liu, H. (1997). Neural-network feature selector. IEEE Transactions on Neural Network, 8(3), 654-662. (Pubitemid 127767809)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 654-662
    • Setiono, R.1    Liu, H.2
  • 29
    • 0024895461 scopus 로고
    • A note on genetic algorithms for largescale feature selection
    • Siedlecki, W., & Sklansky, J. (1989). A note on genetic algorithms for largescale feature selection. Pattern Recognition Letters, 10, 335-347.
    • (1989) Pattern Recognition Letters , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 30
    • 60349107274 scopus 로고    scopus 로고
    • A comparative study on diabetes disease diagnosis using neural networks
    • Temurtas, H., Yumusak, N., & Feyzullah, T. (2009). A comparative study on diabetes disease diagnosis using neural networks. Expert Systems with Applications, 36, 8610-8615.
    • (2009) Expert Systems with Applications , vol.36 , pp. 8610-8615
    • Temurtas, H.1    Yumusak, N.2    Feyzullah, T.3
  • 31
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • DOI 10.1016/S0167-8655(02)00081-8, PII S0167865502000818
    • Verikas, A., & Bacauskiene, M. (2002). Feature selection with neural networks. Pattern Recognition Letters, 23, 1323-1335. (Pubitemid 34657744)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.11 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 32
    • 0042433185 scopus 로고    scopus 로고
    • A domain independent window approach to multiclass object detection using genetic programming
    • Zhang, M., Ciesielski, V. B., & Andreae, P. (2003). A domain independent window approach to multiclass object detection using genetic programming. EURASIP Journal on Applied Signal Processing, 8, 841-859.
    • (2003) EURASIP Journal on Applied Signal Processing , vol.8 , pp. 841-859
    • Zhang, M.1    Ciesielski, V.B.2    Andreae, P.3
  • 34
    • 33845434311 scopus 로고    scopus 로고
    • Fault classification using genetic programming
    • DOI 10.1016/j.ymssp.2006.04.004, PII S088832700600094X
    • Zhang, L., & Nandi, A. K. (2007). Fault classification using genetic programming. Mechanical Systems and Signal Processing, 21, 1273-1284. (Pubitemid 44909390)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.3 , pp. 1273-1284
    • Zhang, L.1    Nandi, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.