메뉴 건너뛰기




Volumn , Issue , 2009, Pages 213-216

Improving a simple bigram HMM part-of-speech tagger by latent annotation and self-training

Author keywords

[No Author keywords available]

Indexed keywords

BEST MODEL; BIGRAMS; LABELED TRAINING DATA; PART-OF-SPEECH TAGGER; PART-OF-SPEECH TAGS; PERFORMANCE; SELF-TRAINING; SIMPLE++; TRI GRAMS; UNLABELED DATA;

EID: 84878185433     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (14)
  • 1
    • 0003332498 scopus 로고    scopus 로고
    • TnT a statistical part-of-speech tagger
    • T. Brants. 2000. TnT a statistical part-of-speech tagger. In ANLP.
    • (2000) ANLP
    • Brants, T.1
  • 2
    • 85123806242 scopus 로고    scopus 로고
    • Bootstrapping pos taggers using unlabelled data
    • S. Clark, J. R. Curran, and M. Osborne. 2003. Bootstrapping pos taggers using unlabelled data. In CoNLL.
    • (2003) CoNLL
    • Clark, S.1    Curran, J. R.2    Osborne, M.3
  • 3
    • 80053360457 scopus 로고    scopus 로고
    • Mandarin part-of-speech tagging and discriminative reranking
    • Z. Huang, M. Harper, and W. Wang. 2007. Mandarin part-of-speech tagging and discriminative reranking. EMNLP.
    • (2007) EMNLP
    • Huang, Z.1    Harper, M.2    Wang, W.3
  • 4
    • 84859910906 scopus 로고    scopus 로고
    • Analyzing the errors of unsupervised learning
    • P. Liang and D. Klein. 2008. Analyzing the errors of unsupervised learning. In ACL.
    • (2008) ACL
    • Liang, P.1    Klein, D.2
  • 5
    • 85121128746 scopus 로고    scopus 로고
    • Factors that affect unsupervised training of acoustic models
    • J. Ma and R. Schwartz. 2008. Factors that affect unsupervised training of acoustic models. In Interspeech.
    • (2008) Interspeech
    • Ma, J.1    Schwartz, R.2
  • 6
    • 84859896044 scopus 로고    scopus 로고
    • Probabilistic CFG with latent annotations
    • Association for Computational Linguistics
    • T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilistic CFG with latent annotations. In ACL. Association for Computational Linguistics.
    • (2005) ACL
    • Matsuzaki, T.1    Miyao, Y.2    Tsujii, J.3
  • 7
    • 84858380058 scopus 로고    scopus 로고
    • Improved inference for unlexicalized parsing
    • S. Petrov and D. Klein. 2007. Improved inference for unlexicalized parsing. In HLT-NAACL.
    • (2007) HLT-NAACL
    • Petrov, S.1    Klein, D.2
  • 8
    • 36348934026 scopus 로고    scopus 로고
    • Learning accurate, compact, and interpretable tree annotation
    • S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learning accurate, compact, and interpretable tree annotation. In ACL.
    • (2006) ACL
    • Petrov, S.1    Barrett, L.2    Thibaux, R.3    Klein, D.4
  • 9
    • 85124018704 scopus 로고    scopus 로고
    • A second-order hidden markov model for part-of-speech tagging
    • S. M. Thede and M. P. Harper. 1999. A second-order hidden markov model for part-of-speech tagging. In ACL.
    • (1999) ACL
    • Thede, S. M.1    Harper, M. P.2
  • 12
    • 34547545797 scopus 로고    scopus 로고
    • Semi-supervised learning for part-of-speech tagging of Mandarin transcribed speech
    • W. Wang, Z. Huang, and M. Harper. 2007. Semi-supervised learning for part-of-speech tagging of Mandarin transcribed speech. In ICASSP.
    • (2007) ICASSP
    • Wang, W.1    Huang, Z.2    Harper, M.3
  • 13
    • 20444401478 scopus 로고    scopus 로고
    • The penn chinese treebank: Phrase structure annotation of a large corpus
    • N. Xue, F. Xia, F. Chiou, and M. Palmer. 2005. The penn chinese treebank: Phrase structure annotation of a large corpus. Natural Language Engineering.
    • (2005) Natural Language Engineering
    • Xue, N.1    Xia, F.2    Chiou, F.3    Palmer, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.