메뉴 건너뛰기




Volumn , Issue , 2008, Pages 879-887

Analyzing the errors of unsupervised learning

Author keywords

[No Author keywords available]

Indexed keywords

DEPENDENCY MODEL; INDUCTION SYSTEM; LOCAL OPTIMA; MEASURING DISTANCES; META MODEL; ROBUST METHODS; THREE MODELS; TRAINING EXAMPLE; TWO PARAMETER;

EID: 84859910906     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (20)
  • 1
    • 33750370375 scopus 로고    scopus 로고
    • Learning shallow context-free languages under simple distributions
    • P.W. Adriaans. 1999. Learning shallow context-free languages under simple distributions. Technical report, Stanford University.
    • (1999) Technical Report, Stanford University
    • Adriaans, P.W.1
  • 3
    • 22944462298 scopus 로고    scopus 로고
    • PAC-learnability of probabilistic deterministic finite state automata
    • A. Clark and F. Thollard. 2005. PAC-learnability of probabilistic deterministic finite state automata. JMLR, 5:473-497.
    • (2005) JMLR , vol.5 , pp. 473-497
    • Clark, A.1    Thollard, F.2
  • 4
    • 19844383195 scopus 로고    scopus 로고
    • Unsupervised induction of stochastic context free grammars with distributional clustering
    • A. Clark. 2001. Unsupervised induction of stochastic context free grammars with distributional clustering. In CoNLL.
    • (2001) CoNLL
    • Clark, A.1
  • 5
    • 33847128516 scopus 로고    scopus 로고
    • A probabilistic analysis of EM for mixtures of separated, spherical Gaussians
    • S. Dasgupta and L. Schulman. 2007. A probabilistic analysis of EM for mixtures of separated, spherical Gaussians. JMLR, 8.
    • (2007) JMLR , vol.8
    • Dasgupta, S.1    Schulman, L.2
  • 6
    • 0033336275 scopus 로고    scopus 로고
    • Learning mixtures of Gaussians
    • S. Dasgupta. 1999. Learning mixtures of Gaussians. In FOCS.
    • (1999) FOCS
    • Dasgupta, S.1
  • 7
    • 33746050575 scopus 로고    scopus 로고
    • Learning mixtures of product distributions over discrete domains
    • J. Feldman, R. O'Donnell, and R. A. Servedio. 2005. Learning mixtures of product distributions over discrete domains. In FOCS, pages 501-510.
    • (2005) FOCS , pp. 501-510
    • Feldman, J.1    O'donnell, R.2    Servedio, R.A.3
  • 8
    • 84860525845 scopus 로고    scopus 로고
    • A fully Bayesian approach to unsupervised part-of-speech tagging
    • S. Goldwater and T. Griffiths. 2007. A fully Bayesian approach to unsupervised part-of-speech tagging. In ACL.
    • (2007) ACL
    • Goldwater, S.1    Griffiths, T.2
  • 9
    • 84859881704 scopus 로고    scopus 로고
    • Unsupervised learning of field segmentation models for information extraction
    • T. Grenager, D. Klein, and C. D. Manning. 2005. Unsupervised learning of field segmentation models for information extraction. In ACL.
    • (2005) ACL
    • Grenager, T.1    Klein, D.2    Manning, C.D.3
  • 10
    • 84860531395 scopus 로고    scopus 로고
    • Prototype-based grammar induction
    • A. Haghighi and D. Klein. 2006. Prototype-based grammar induction. In ACL.
    • (2006) ACL
    • Haghighi, A.1    Klein, D.2
  • 11
    • 80053381171 scopus 로고    scopus 로고
    • Why doesn't EM find good HMM POS-taggers?
    • M. Johnson. 2007. Why doesn't EM find good HMM POS-taggers? In EMNLP/CoNLL.
    • (2007) EMNLP/CoNLL
    • Johnson, M.1
  • 12
    • 34547991476 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • D. Klein and C. D. Manning. 2004. Corpus-based induction of syntactic structure: Models of dependency and constituency. In ACL.
    • (2004) ACL
    • Klein, D.1    Manning, C.D.2
  • 13
    • 0002719797 scopus 로고    scopus 로고
    • The hungarian method for the assignment problem
    • H. W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistic Quarterly, 2:83-97.
    • Naval Research Logistic Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 15
    • 84867119745 scopus 로고
    • Tagging english text with a probabilistic model
    • B. Merialdo. 1994. Tagging English text with a probabilistic model. Computational Linguistics, 20:155- 171.
    • (1994) Computational Linguistics , vol.20 , pp. 155-171
    • Merialdo, B.1
  • 16
    • 0010032271 scopus 로고
    • Inside-outside reestimation from partially bracketed corpora
    • F. Pereira and Y. Shabes. 1992. Inside-outside reestimation from partially bracketed corpora. In ACL.
    • (1992) ACL
    • Pereira, F.1    Shabes, Y.2
  • 17
    • 0032049450 scopus 로고    scopus 로고
    • On the learnability and usage of acyclic probabilistic finite automata
    • D. Ron, Y. Singer, and N. Tishby. 1998. On the learnability and usage of acyclic probabilistic finite automata. Journal of Computer and System Sciences, 56:133- 152.
    • (1998) Journal of Computer and System Sciences , vol.56 , pp. 133-152
    • Ron, D.1    Singer, Y.2    Tishby, N.3
  • 18
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • N. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear models on unlabeled data. In ACL.
    • (2005) ACL
    • Smith, N.1    Eisner, J.2
  • 19
    • 84860514723 scopus 로고    scopus 로고
    • Annealing structural bias in multilingual weighted grammar induction
    • N. Smith and J. Eisner. 2006. Annealing structural bias in multilingual weighted grammar induction. In ACL.
    • (2006) ACL
    • Smith, N.1    Eisner, J.2
  • 20
    • 33749267643 scopus 로고    scopus 로고
    • An investigation of computational and informational limits in Gaussian mixture clustering
    • N. Srebro, G. Shakhnarovich, and S. Roweis. 2006. An investigation of computational and informational limits in Gaussian mixture clustering. In ICML, pages 865-872.
    • (2006) ICML , pp. 865-872
    • Srebro, N.1    Shakhnarovich, G.2    Roweis, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.