-
1
-
-
0001091851
-
Maximum likelihood estimation of parameters subject to restraints
-
Aitchison, J., & Silvey, S. (1958). Maximum likelihood estimation of parameters subject to restraints. Ann. Math. Stat., 29, 813-833.
-
(1958)
Ann. Math. Stat.
, vol.29
, pp. 813-833
-
-
Aitchison, J.1
Silvey, S.2
-
2
-
-
0003572485
-
-
Berlin: Springer-Verlag
-
Andersen, P., Borgan, O., Gill, R., & Keiding, N. (1993). Statistical models based on counting processes. Berlin: Springer-Verlag.
-
(1993)
Statistical models based on counting processes
-
-
Andersen, P.1
Borgan, O.2
Gill, R.3
Keiding, N.4
-
3
-
-
0000040173
-
The identification of point process systems
-
Brillinger, D. (1975). The identification of point process systems. Ann. Prob., 3, 909- 929.
-
(1975)
Ann. Prob.
, vol.3
, pp. 909- 929
-
-
Brillinger, D.1
-
5
-
-
0023686914
-
Maximum likelihood analysis of spike trains of interacting nerve cells
-
Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biol. Cybern., 59, 189-200.
-
(1988)
Biol. Cybern.
, vol.59
, pp. 189-200
-
-
Brillinger, D.1
-
6
-
-
0032530363
-
A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
-
Brown, E., Frank, L., Tang, D., Quirk, M., &Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neuroscience, 18, 7411-7425.
-
(1998)
J. Neuroscience
, vol.18
, pp. 7411-7425
-
-
Brown, E.1
Frank, L.2
Tang, D.3
Quirk, M.4
Wilson, M.5
-
7
-
-
2142765521
-
Multiple neural spike train data analysis: State-of-the-art and future challenges
-
Brown, E., Kass, R., & Mitra, P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neurosci., 7, 456-461.
-
(2004)
Nature Neurosci.
, vol.7
, pp. 456-461
-
-
Brown, E.1
Kass, R.2
Mitra, P.3
-
10
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
Edelman, A., Arias, T., & Smith, S. (1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20, 303-353.
-
(1998)
SIAM J. Matrix Anal. Appl.
, vol.20
, pp. 303-353
-
-
Edelman, A.1
Arias, T.2
Smith, S.3
-
11
-
-
0036133948
-
Unitary events in multiple singleneuron spiking activity: II
-
Grün, S., Diesmann, M., & Aertsen, A. (2002). Unitary events in multiple singleneuron spiking activity: II. Nonstationary data. Neural Comput., 14, 81-119.
-
(2002)
Nonstationary data. Neural Comput.
, vol.14
, pp. 81-119
-
-
Grün, S.1
Diesmann, M.2
Aertsen, A.3
-
13
-
-
0032780031
-
Generalizable patterns in neuroimaging:How many principal components?
-
Hansen, L., Larsen, J., Nielsen, F., Strother, S., Rostrup, E., Savoy, R., et al. (1999). Generalizable patterns in neuroimaging:How many principal components? NeuroImage, 9, 534-544.
-
(1999)
NeuroImage
, vol.9
, pp. 534-544
-
-
Hansen, L.1
Larsen, J.2
Nielsen, F.3
Strother, S.4
Rostrup, E.5
Savoy, R.6
-
16
-
-
84861109928
-
Assessment of synchrony in multiple neural spike trains using loglinear point process models
-
Kass, R., Kelly, R., & Loh, W. (2011). Assessment of synchrony in multiple neural spike trains using loglinear point process models. Ann. Appl. Stat., 5, 1262-1292.
-
(2011)
Ann. Appl. Stat.
, vol.5
, pp. 1262-1292
-
-
Kass, R.1
Kelly, R.2
Loh, W.3
-
17
-
-
79953672492
-
A Granger causality measure for point process models of ensemble neural spiking activity
-
Kim, S., Putrino, D., Ghosh, S., & Brown, E. (2011). A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Comput Biol, 7(3), e1001110.
-
(2011)
PLoS Comput Biol
, vol.7
, Issue.3
-
-
Kim, S.1
Putrino, D.2
Ghosh, S.3
Brown, E.4
-
20
-
-
33748333622
-
The gradient projection method along geodesics
-
Luenberger, D. (1972). The gradient projection method along geodesics. Management Science, 18, 620-631.
-
(1972)
Management Science
, vol.18
, pp. 620-631
-
-
Luenberger, D.1
-
23
-
-
0036503069
-
Optimization algorithms exploiting unitary constraints
-
Manton, J. (2002). Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Processing, 50, 635-650.
-
(2002)
IEEE Trans. Signal Processing
, vol.50
, pp. 635-650
-
-
Manton, J.1
-
25
-
-
0032477880
-
Spatially independent activity patterns in functional MRI data during the Stroop color-naming task
-
McKeown, M., Jung, T., Makeig, S., Brown, G., Kindermann, S., Lee, T., et al. (1998). Spatially independent activity patterns in functional MRI data during the Stroop color-naming task. Proc. Natl. Acad. Sci. USA, 95, 803-810.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 803-810
-
-
McKeown, M.1
Jung, T.2
Makeig, S.3
Brown, G.4
Kindermann, S.5
Lee, T.6
-
26
-
-
0032988822
-
Analysis of dynamic brain imaging data
-
Mitra, P., & Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophysical Journal, 76, 691-708.
-
(1999)
Biophysical Journal
, vol.76
, pp. 691-708
-
-
Mitra, P.1
Pesaran, B.2
-
27
-
-
23044490853
-
Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
-
Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput., 17, 1927-1961.
-
(2005)
Neural Comput.
, vol.17
, pp. 1927-1961
-
-
Okatan, M.1
Wilson, M.2
Brown, E.3
-
29
-
-
0003634127
-
-
Cambridge, MA: MIT Press
-
Rieke, F., Warland, D., de Ruyter van Stevenink, R., & Bialek, W. (1997). Spikes: Exploring the neural code. Cambridge, MA: MIT Press.
-
(1997)
Spikes: Exploring the neural code
-
-
Rieke, F.1
Warland, D.2
de Ruyter van Stevenink, R.3
Bialek, W.4
-
30
-
-
0001652862
-
The Lagrangian multiplier test
-
Silvey, S. (1959). The Lagrangian multiplier test. Ann. Math. Stat., 30, 389-407.
-
(1959)
Ann. Math. Stat.
, vol.30
, pp. 389-407
-
-
Silvey, S.1
-
32
-
-
33847188836
-
System identification with analog and counting process observations I: Hybrid stochastic intensity and likelihood ratios
-
Piscataway, NJ: IEEE
-
Solo, V. (2005). System identification with analog and counting process observations I: Hybrid stochastic intensity and likelihood ratios. In Proc. IEEE Conf. Decision and Control (pp. 3105-3110). Piscataway, NJ: IEEE.
-
(2005)
Proc. IEEE Conf. Decision and Control
, pp. 3105-3110
-
-
Solo, V.1
-
33
-
-
39649085517
-
High dimensional point process system identification: PCA and dynamic index models
-
Piscataway, NJ: IEEE
-
Solo, V. (2006). High dimensional point process system identification: PCA and dynamic index models. In Proc. IEEE Conf. Decision and Control (pp. 829-833). Piscataway, NJ: IEEE.
-
(2006)
Proc. IEEE Conf. Decision and Control
, pp. 829-833
-
-
Solo, V.1
-
34
-
-
12544253489
-
Apoint process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
-
Truccolo, W., Eden, U., Fellows, M., Donoghue, J., &Brown, E. (2005).Apoint process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophys., 93, 1074-1089.
-
(2005)
J. Neurophys.
, vol.93
, pp. 1074-1089
-
-
Truccolo, W.1
Eden, U.2
Fellows, M.3
Donoghue, J.4
Brown, E.5
-
35
-
-
73949086190
-
Collective dynamics in humanand monkey sensorimotor cortex: Predicting single neuron spikes
-
Truccolo, W., Hochberg, L., &Donoghue, J. (2010).Collective dynamics in humanand monkey sensorimotor cortex: Predicting single neuron spikes. Nature Neurosci., 13, 105-111.
-
(2010)
Nature Neurosci.
, vol.13
, pp. 105-111
-
-
Truccolo, W.1
Hochberg, L.2
Donoghue, J.3
|