메뉴 건너뛰기




Volumn 25, Issue 1, 2013, Pages 101-122

Point-Process Principal Components Analysis via Geometric Optimization

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC ANALYSIS; MAXIMUM LIKELIHOOD ESTIMATION;

EID: 84878183663     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00382     Document Type: Article
Times cited : (7)

References (35)
  • 1
    • 0001091851 scopus 로고
    • Maximum likelihood estimation of parameters subject to restraints
    • Aitchison, J., & Silvey, S. (1958). Maximum likelihood estimation of parameters subject to restraints. Ann. Math. Stat., 29, 813-833.
    • (1958) Ann. Math. Stat. , vol.29 , pp. 813-833
    • Aitchison, J.1    Silvey, S.2
  • 3
    • 0000040173 scopus 로고
    • The identification of point process systems
    • Brillinger, D. (1975). The identification of point process systems. Ann. Prob., 3, 909- 929.
    • (1975) Ann. Prob. , vol.3 , pp. 909- 929
    • Brillinger, D.1
  • 5
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biol. Cybern., 59, 189-200.
    • (1988) Biol. Cybern. , vol.59 , pp. 189-200
    • Brillinger, D.1
  • 6
    • 0032530363 scopus 로고    scopus 로고
    • A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
    • Brown, E., Frank, L., Tang, D., Quirk, M., &Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neuroscience, 18, 7411-7425.
    • (1998) J. Neuroscience , vol.18 , pp. 7411-7425
    • Brown, E.1    Frank, L.2    Tang, D.3    Quirk, M.4    Wilson, M.5
  • 7
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-the-art and future challenges
    • Brown, E., Kass, R., & Mitra, P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neurosci., 7, 456-461.
    • (2004) Nature Neurosci. , vol.7 , pp. 456-461
    • Brown, E.1    Kass, R.2    Mitra, P.3
  • 10
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • Edelman, A., Arias, T., & Smith, S. (1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20, 303-353.
    • (1998) SIAM J. Matrix Anal. Appl. , vol.20 , pp. 303-353
    • Edelman, A.1    Arias, T.2    Smith, S.3
  • 13
    • 0032780031 scopus 로고    scopus 로고
    • Generalizable patterns in neuroimaging:How many principal components?
    • Hansen, L., Larsen, J., Nielsen, F., Strother, S., Rostrup, E., Savoy, R., et al. (1999). Generalizable patterns in neuroimaging:How many principal components? NeuroImage, 9, 534-544.
    • (1999) NeuroImage , vol.9 , pp. 534-544
    • Hansen, L.1    Larsen, J.2    Nielsen, F.3    Strother, S.4    Rostrup, E.5    Savoy, R.6
  • 16
    • 84861109928 scopus 로고    scopus 로고
    • Assessment of synchrony in multiple neural spike trains using loglinear point process models
    • Kass, R., Kelly, R., & Loh, W. (2011). Assessment of synchrony in multiple neural spike trains using loglinear point process models. Ann. Appl. Stat., 5, 1262-1292.
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 1262-1292
    • Kass, R.1    Kelly, R.2    Loh, W.3
  • 17
    • 79953672492 scopus 로고    scopus 로고
    • A Granger causality measure for point process models of ensemble neural spiking activity
    • Kim, S., Putrino, D., Ghosh, S., & Brown, E. (2011). A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Comput Biol, 7(3), e1001110.
    • (2011) PLoS Comput Biol , vol.7 , Issue.3
    • Kim, S.1    Putrino, D.2    Ghosh, S.3    Brown, E.4
  • 20
    • 33748333622 scopus 로고
    • The gradient projection method along geodesics
    • Luenberger, D. (1972). The gradient projection method along geodesics. Management Science, 18, 620-631.
    • (1972) Management Science , vol.18 , pp. 620-631
    • Luenberger, D.1
  • 23
    • 0036503069 scopus 로고    scopus 로고
    • Optimization algorithms exploiting unitary constraints
    • Manton, J. (2002). Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Processing, 50, 635-650.
    • (2002) IEEE Trans. Signal Processing , vol.50 , pp. 635-650
    • Manton, J.1
  • 25
    • 0032477880 scopus 로고    scopus 로고
    • Spatially independent activity patterns in functional MRI data during the Stroop color-naming task
    • McKeown, M., Jung, T., Makeig, S., Brown, G., Kindermann, S., Lee, T., et al. (1998). Spatially independent activity patterns in functional MRI data during the Stroop color-naming task. Proc. Natl. Acad. Sci. USA, 95, 803-810.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 803-810
    • McKeown, M.1    Jung, T.2    Makeig, S.3    Brown, G.4    Kindermann, S.5    Lee, T.6
  • 26
    • 0032988822 scopus 로고    scopus 로고
    • Analysis of dynamic brain imaging data
    • Mitra, P., & Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophysical Journal, 76, 691-708.
    • (1999) Biophysical Journal , vol.76 , pp. 691-708
    • Mitra, P.1    Pesaran, B.2
  • 27
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput., 17, 1927-1961.
    • (2005) Neural Comput. , vol.17 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.2    Brown, E.3
  • 30
    • 0001652862 scopus 로고
    • The Lagrangian multiplier test
    • Silvey, S. (1959). The Lagrangian multiplier test. Ann. Math. Stat., 30, 389-407.
    • (1959) Ann. Math. Stat. , vol.30 , pp. 389-407
    • Silvey, S.1
  • 32
    • 33847188836 scopus 로고    scopus 로고
    • System identification with analog and counting process observations I: Hybrid stochastic intensity and likelihood ratios
    • Piscataway, NJ: IEEE
    • Solo, V. (2005). System identification with analog and counting process observations I: Hybrid stochastic intensity and likelihood ratios. In Proc. IEEE Conf. Decision and Control (pp. 3105-3110). Piscataway, NJ: IEEE.
    • (2005) Proc. IEEE Conf. Decision and Control , pp. 3105-3110
    • Solo, V.1
  • 33
    • 39649085517 scopus 로고    scopus 로고
    • High dimensional point process system identification: PCA and dynamic index models
    • Piscataway, NJ: IEEE
    • Solo, V. (2006). High dimensional point process system identification: PCA and dynamic index models. In Proc. IEEE Conf. Decision and Control (pp. 829-833). Piscataway, NJ: IEEE.
    • (2006) Proc. IEEE Conf. Decision and Control , pp. 829-833
    • Solo, V.1
  • 34
    • 12544253489 scopus 로고    scopus 로고
    • Apoint process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • Truccolo, W., Eden, U., Fellows, M., Donoghue, J., &Brown, E. (2005).Apoint process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophys., 93, 1074-1089.
    • (2005) J. Neurophys. , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.2    Fellows, M.3    Donoghue, J.4    Brown, E.5
  • 35
    • 73949086190 scopus 로고    scopus 로고
    • Collective dynamics in humanand monkey sensorimotor cortex: Predicting single neuron spikes
    • Truccolo, W., Hochberg, L., &Donoghue, J. (2010).Collective dynamics in humanand monkey sensorimotor cortex: Predicting single neuron spikes. Nature Neurosci., 13, 105-111.
    • (2010) Nature Neurosci. , vol.13 , pp. 105-111
    • Truccolo, W.1    Hochberg, L.2    Donoghue, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.