-
3
-
-
70449568627
-
K-nearest neighbour method in functional nonparametric regression
-
Burba F., Ferraty F., Vieu P. k-nearest neighbour method in functional nonparametric regression. J. Nonparametr. Stat. 2009, 21:453-469.
-
(2009)
J. Nonparametr. Stat.
, vol.21
, pp. 453-469
-
-
Burba, F.1
Ferraty, F.2
Vieu, P.3
-
4
-
-
0346629527
-
Estimation de la régression par la méthode des k points les plus proches avec noyau: quelques propriétés de convergence ponctuelle
-
Springer-Verlag
-
Collomb G. Estimation de la régression par la méthode des k points les plus proches avec noyau: quelques propriétés de convergence ponctuelle. Lecture Notes in Mathematics 1980, vol. 821:159-175. Springer-Verlag.
-
(1980)
Lecture Notes in Mathematics
, vol.821
, pp. 159-175
-
-
Collomb, G.1
-
5
-
-
84953495323
-
A preliminary version of the preliminary version of an invariance principle for N. N. empirical density functions
-
Carleton Mathematical Lecture Note 27, Carleton Univ., Ottawa
-
Csörgo, M., Révész, P., 1980. A preliminary version of the preliminary version of an invariance principle for N. N. empirical density functions. Carleton Mathematical Lecture Note 27, Carleton Univ., Ottawa, pp. 91-113.
-
(1980)
, pp. 91-113
-
-
Csörgo, M.1
Révész, P.2
-
6
-
-
83455200087
-
One bootstrap suffices to generate sharp uniform bounds in functional estimation
-
Deheuvels P. One bootstrap suffices to generate sharp uniform bounds in functional estimation. Kybernetica 2011, 47:881-891.
-
(2011)
Kybernetica
, vol.47
, pp. 881-891
-
-
Deheuvels, P.1
-
7
-
-
77952547042
-
Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme
-
Birkhäuser Boston, Boston, MA, Statistical Models and Methods for Biomedical and Technical Systems
-
Deheuvels P., Derzko G. Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme. Stat. Ind. Technol. 2008, 171-186. Birkhäuser Boston, Boston, MA.
-
(2008)
Stat. Ind. Technol.
, pp. 171-186
-
-
Deheuvels, P.1
Derzko, G.2
-
9
-
-
0000218321
-
Functional laws of the iterated logarithm for the increments of empirical and quantile processes
-
Deheuvels P., Mason D.M. Functional laws of the iterated logarithm for the increments of empirical and quantile processes. Ann. Probab. 1992, 20:1248-1287.
-
(1992)
Ann. Probab.
, vol.20
, pp. 1248-1287
-
-
Deheuvels, P.1
Mason, D.M.2
-
10
-
-
8744302145
-
General asymptotic confidence bands based on kernel-type function estimators
-
Deheuvels P., Mason D.M. General asymptotic confidence bands based on kernel-type function estimators. Stat. Inference Stoch. Process. 2004, 7:225-277.
-
(2004)
Stat. Inference Stoch. Process.
, vol.7
, pp. 225-277
-
-
Deheuvels, P.1
Mason, D.M.2
-
11
-
-
84881556031
-
Uniform in bandwidth functionnal limit laws
-
Deheuvels P., Ouadah S. Uniform in bandwidth functionnal limit laws. J. Theor. Probab. 2011, 10.1007/s10959-011-0376-1.
-
(2011)
J. Theor. Probab.
-
-
Deheuvels, P.1
Ouadah, S.2
-
13
-
-
0000236372
-
Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates
-
Devroye L. Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 1982, 61:467-481.
-
(1982)
Z. Wahrscheinlichkeitstheor. Verwandte Geb.
, vol.61
, pp. 467-481
-
-
Devroye, L.1
-
14
-
-
0009911924
-
The strong uniform consistency of nearest neighbor density estimates
-
Devroye L.P., Wagner T.J. The strong uniform consistency of nearest neighbor density estimates. Ann. Statist. 1977, 5:536-540.
-
(1977)
Ann. Statist.
, vol.5
, pp. 536-540
-
-
Devroye, L.P.1
Wagner, T.J.2
-
15
-
-
23744481266
-
Uniform in bandwidth consistency of kernel-type function estimators
-
Einmahl U., Mason D.M. Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 2005, 33:1380-1403.
-
(2005)
Ann. Statist.
, vol.33
, pp. 1380-1403
-
-
Einmahl, U.1
Mason, D.M.2
-
16
-
-
0003909532
-
-
USAF School of Aviation Medicine, Randoff Fiels, Texas
-
Fix E., Hodges J.L. Discriminatory analysis. Nonparametric discrimination: consistency properties. Technical Report 4, Project No. 21-49-004 1951, USAF School of Aviation Medicine, Randoff Fiels, Texas.
-
(1951)
Discriminatory analysis. Nonparametric discrimination: consistency properties. Technical Report 4, Project No. 21-49-004
-
-
Fix, E.1
Hodges, J.L.2
-
17
-
-
0001681560
-
A nonparametric estimate of a multivariate density function
-
Loftsgaarden D.O., Quesenberry C.P. A nonparametric estimate of a multivariate density function. Ann. Math. Statist. 1965, 36:1049-1051.
-
(1965)
Ann. Math. Statist.
, vol.36
, pp. 1049-1051
-
-
Loftsgaarden, D.O.1
Quesenberry, C.P.2
-
18
-
-
26444555624
-
Rate of strong uniform convergence of k-NN density estimates
-
Mack Y.P. Rate of strong uniform convergence of k-NN density estimates. J. Statist. Plann. Inference 1983, 8:185-192.
-
(1983)
J. Statist. Plann. Inference
, vol.8
, pp. 185-192
-
-
Mack, Y.P.1
-
19
-
-
33751102716
-
Uniform consistency of some estimates of a density function
-
Moore D.S., Henrichon E.G. Uniform consistency of some estimates of a density function. Ann. Math. Statist. 1969, 40:1499-1502.
-
(1969)
Ann. Math. Statist.
, vol.40
, pp. 1499-1502
-
-
Moore, D.S.1
Henrichon, E.G.2
-
20
-
-
58149319140
-
The law of the iterated logarithm for the multivariate nearest neighbor density estimators
-
Ralescu S.S. The law of the iterated logarithm for the multivariate nearest neighbor density estimators. J. Multivariate Anal. 1995, 53(1):159-179.
-
(1995)
J. Multivariate Anal.
, vol.53
, Issue.1
, pp. 159-179
-
-
Ralescu, S.S.1
-
22
-
-
0000187772
-
An invariance principle for the law of the iterated logarithm
-
Strassen V. An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 1964, 3:211-226.
-
(1964)
Z. Wahrscheinlichkeitstheor. Verwandte Geb.
, vol.3
, pp. 211-226
-
-
Strassen, V.1
-
23
-
-
84877885979
-
Functional limit laws for the increments of the quantile process; with applications
-
Viallon V. Functional limit laws for the increments of the quantile process; with applications. Electron. J. Stat. 2007, 1:496-518.
-
(2007)
Electron. J. Stat.
, vol.1
, pp. 496-518
-
-
Viallon, V.1
|