메뉴 건너뛰기




Volumn 25, Issue 5, 2013, Pages 1261-1276

Learning spatial invariance with the trace rule in nonuniform distributions

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGICAL MODEL; HUMAN; LEARNING; LETTER; PHYSIOLOGY; THEORETICAL MODEL; VISION;

EID: 84877801406     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00435     Document Type: Letter
Times cited : (4)

References (25)
  • 1
    • 11144357431 scopus 로고    scopus 로고
    • The world from a cat's perspective: Statistics of natural videos
    • Betsch, B. Y., Einhauser,W., Kording, K. P., & Konig, P. (2004). The world from a cat's perspective: Statistics of natural videos. Biol. Cybern., 90, 41-50.
    • (2004) Biol. Cybern. , vol.90 , pp. 41-50
    • Betsch, B.Y.1    Einhauser, W.2    Kording, K.P.3    Konig, P.4
  • 6
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • Földiák, P. (1991). Learning invariance from transformation sequences. Neural Comput., 3, 194-200.
    • (1991) Neural Comput. , vol.3 , pp. 194-200
    • Földiák, P.1
  • 7
    • 0019152630 scopus 로고
    • Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. (1980). Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193-201.
    • (1980) Biological Cybernetics , vol.36 , pp. 193-201
    • Fukushima, K.1
  • 8
    • 78650599493 scopus 로고    scopus 로고
    • Broken symmetries in a location invariant word recognition network
    • Hannagan, T., Dandurand, F., & Grainger, J. (2011). Broken symmetries in a location invariant word recognition network. Neural Comput., 23, 251-283.
    • (2011) Neural Comput. , vol.23 , pp. 251-283
    • Hannagan, T.1    Dandurand, F.2    Grainger, J.3
  • 9
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Piscataway, NJ: IEEE
    • Huang, F. J., Boureau, Y., & LeCun, Y. (2007). Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proc.ComputerVision and Pattern Recognition Conference. Piscataway, NJ: IEEE.
    • (2007) In Proc.ComputerVision and Pattern Recognition Conference
    • Huang, F.J.1    Boureau, Y.2    LeCun, Y.3
  • 11
    • 0032203257 scopus 로고    scopus 로고
    • Gradient based learning applied to document recognition
    • LeCun, Y., Bottou, L., & Haffner, P. (1998). Gradient based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Haffner, P.3
  • 14
    • 0020464111 scopus 로고
    • Simplified neuron model as a principal component analyzer
    • Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15, 267-273.
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 16
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019-1025.
    • (1999) Nature Neuroscience , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 17
    • 0041470119 scopus 로고    scopus 로고
    • Invariant object recognition in the visual system with error correction and temporal difference learning
    • Rolls, E. T., & Stringer, S. M. (2001). Invariant object recognition in the visual system with error correction and temporal difference learning. Network: Computation in Neural Systems, 12, 111-129.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 111-129
    • Rolls, E.T.1    Stringer, S.M.2
  • 19
    • 0027663698 scopus 로고
    • Symmetries and discriminability in feedforward network architectures
    • Shawe-Taylor, J. (1993). Symmetries and discriminability in feedforward network architectures. IEEE Transactions on Neural Networks, 4, 816-826.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 816-826
    • Shawe-Taylor, J.1
  • 20
    • 84872232047 scopus 로고    scopus 로고
    • Slowness: An objective for spiketiming-dependent plasticity?
    • Sprekeler, H., Michaelis, C., & Wiskott, L. (2007). Slowness: An objective for spiketiming- dependent plasticity?. PLOS: Computational Biology, 3, 1136-1148.
    • (2007) PLOS: Computational Biology , vol.3 , pp. 1136-1148
    • Sprekeler, H.1    Michaelis, C.2    Wiskott, L.3
  • 21
    • 0019537951 scopus 로고
    • Toward a modern theory of adaptive networks: Expectation and prediction
    • Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88, 135-170.
    • (1981) Psychological Review , vol.88 , pp. 135-170
    • Sutton, R.S.1    Barto, A.G.2
  • 22
    • 0031040957 scopus 로고    scopus 로고
    • Invariant face and object recognition in the visual system
    • Wallis, G., & Rolls, E. T. (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology, 51, 167-194.
    • (1997) Progress in Neurobiology , vol.51 , pp. 167-194
    • Wallis, G.1    Rolls, E.T.2
  • 23
    • 0034149902 scopus 로고    scopus 로고
    • Self-organization of symmetry networks: Transformation invariance from the spontaneous symmetry-breaking mechanism
    • Webber, C.J.S. (2000). Self-organization of symmetry networks: Transformation invariance from the spontaneous symmetry-breaking mechanism. Neural Comput., 12, 565-596.
    • (2000) Neural Comput. , vol.12 , pp. 565-596
    • Webber, C.J.S.1
  • 24
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Comput., 14, 715-770.
    • (2002) Neural Comput. , vol.14 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.