-
1
-
-
11144357431
-
The world from a cat's perspective: Statistics of natural videos
-
Betsch, B. Y., Einhauser,W., Kording, K. P., & Konig, P. (2004). The world from a cat's perspective: Statistics of natural videos. Biol. Cybern., 90, 41-50.
-
(2004)
Biol. Cybern.
, vol.90
, pp. 41-50
-
-
Betsch, B.Y.1
Einhauser, W.2
Kording, K.P.3
Konig, P.4
-
3
-
-
34548775081
-
A model of V4 shape selectivity and invariance
-
Cadieu, C., Kouh, M., Pasupathy, A., Connor, C. E., Riesenhuber, M., & Poggio, T. (2007). A model of V4 shape selectivity and invariance. Journal of Neurophysiology, 98, 1733-1750.
-
(2007)
Journal of Neurophysiology
, vol.98
, pp. 1733-1750
-
-
Cadieu, C.1
Kouh, M.2
Pasupathy, A.3
Connor, C.E.4
Riesenhuber, M.5
Poggio, T.6
-
6
-
-
0000188120
-
Learning invariance from transformation sequences
-
Földiák, P. (1991). Learning invariance from transformation sequences. Neural Comput., 3, 194-200.
-
(1991)
Neural Comput.
, vol.3
, pp. 194-200
-
-
Földiák, P.1
-
7
-
-
0019152630
-
Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Fukushima, K. (1980). Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193-201.
-
(1980)
Biological Cybernetics
, vol.36
, pp. 193-201
-
-
Fukushima, K.1
-
8
-
-
78650599493
-
Broken symmetries in a location invariant word recognition network
-
Hannagan, T., Dandurand, F., & Grainger, J. (2011). Broken symmetries in a location invariant word recognition network. Neural Comput., 23, 251-283.
-
(2011)
Neural Comput.
, vol.23
, pp. 251-283
-
-
Hannagan, T.1
Dandurand, F.2
Grainger, J.3
-
9
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
Piscataway, NJ: IEEE
-
Huang, F. J., Boureau, Y., & LeCun, Y. (2007). Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proc.ComputerVision and Pattern Recognition Conference. Piscataway, NJ: IEEE.
-
(2007)
In Proc.ComputerVision and Pattern Recognition Conference
-
-
Huang, F.J.1
Boureau, Y.2
LeCun, Y.3
-
11
-
-
0032203257
-
Gradient based learning applied to document recognition
-
LeCun, Y., Bottou, L., & Haffner, P. (1998). Gradient based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Haffner, P.3
-
12
-
-
58849130561
-
-
(Tech Rep.MIT-CSAIL-TR-2007-060). Cambridge, MA: MIT
-
Masquelier, T., Serre, T., Thorpe, S., & Poggio, T. (2007). Learning complex cell invariance from natural videos: A plausibility proof (Tech. Rep. MIT-CSAIL-TR-2007-060). Cambridge, MA: MIT.
-
(2007)
Learning complex cell invariance from natural videos: A plausibility proof
-
-
Masquelier, T.1
Serre, T.2
Thorpe, S.3
Poggio, T.4
-
14
-
-
0020464111
-
Simplified neuron model as a principal component analyzer
-
Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15, 267-273.
-
(1982)
Journal of Mathematical Biology
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
15
-
-
38949193299
-
Why is real-world visual object recognition hard
-
Pinto, N., Cox, D., & DiCarlo, J. (2008). Why is real-world visual object recognition hard. PLoS Computational Biology, 4, e27.
-
(2008)
PLoS Computational Biology
, vol.4
-
-
Pinto, N.1
Cox, D.2
DiCarlo, J.3
-
16
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019-1025.
-
(1999)
Nature Neuroscience
, vol.2
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
17
-
-
0041470119
-
Invariant object recognition in the visual system with error correction and temporal difference learning
-
Rolls, E. T., & Stringer, S. M. (2001). Invariant object recognition in the visual system with error correction and temporal difference learning. Network: Computation in Neural Systems, 12, 111-129.
-
(2001)
Network: Computation in Neural Systems
, vol.12
, pp. 111-129
-
-
Rolls, E.T.1
Stringer, S.M.2
-
18
-
-
34247096930
-
A feedforward architecture accounts for rapid categorization
-
Serre, T.,Oliva, A.,&Poggio, T. (2007).Afeedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104, 6424-6429.
-
(2007)
Proceedings of the National Academy of Sciences
, vol.104
, pp. 6424-6429
-
-
Serre, T.1
Oliva, A.2
Poggio, T.3
-
19
-
-
0027663698
-
Symmetries and discriminability in feedforward network architectures
-
Shawe-Taylor, J. (1993). Symmetries and discriminability in feedforward network architectures. IEEE Transactions on Neural Networks, 4, 816-826.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, pp. 816-826
-
-
Shawe-Taylor, J.1
-
20
-
-
84872232047
-
Slowness: An objective for spiketiming-dependent plasticity?
-
Sprekeler, H., Michaelis, C., & Wiskott, L. (2007). Slowness: An objective for spiketiming- dependent plasticity?. PLOS: Computational Biology, 3, 1136-1148.
-
(2007)
PLOS: Computational Biology
, vol.3
, pp. 1136-1148
-
-
Sprekeler, H.1
Michaelis, C.2
Wiskott, L.3
-
21
-
-
0019537951
-
Toward a modern theory of adaptive networks: Expectation and prediction
-
Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88, 135-170.
-
(1981)
Psychological Review
, vol.88
, pp. 135-170
-
-
Sutton, R.S.1
Barto, A.G.2
-
22
-
-
0031040957
-
Invariant face and object recognition in the visual system
-
Wallis, G., & Rolls, E. T. (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology, 51, 167-194.
-
(1997)
Progress in Neurobiology
, vol.51
, pp. 167-194
-
-
Wallis, G.1
Rolls, E.T.2
-
23
-
-
0034149902
-
Self-organization of symmetry networks: Transformation invariance from the spontaneous symmetry-breaking mechanism
-
Webber, C.J.S. (2000). Self-organization of symmetry networks: Transformation invariance from the spontaneous symmetry-breaking mechanism. Neural Comput., 12, 565-596.
-
(2000)
Neural Comput.
, vol.12
, pp. 565-596
-
-
Webber, C.J.S.1
-
24
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Comput., 14, 715-770.
-
(2002)
Neural Comput.
, vol.14
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.2
-
25
-
-
0036886971
-
Biophysiologically plausible implementations of the maximum operation
-
Cambridge, MA: MIT Press
-
Yu, A. J., Giese, M. A., & Poggio, T. (2002). Biophysiologically plausible implementations of the maximum operation. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 2857-2881). Cambridge, MA: MIT Press.
-
(2002)
In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems
, vol.14
, pp. 2857-2881
-
-
Yu, A.J.1
Giese, M.A.2
Poggio, T.3
|