-
2
-
-
84877728304
-
Stochastic convex optimization with bandit feedback
-
To appear
-
A. Agarwal, D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin. Stochastic convex optimization with bandit feedback. SIAM Journal on Optimization, To appear, 2011. URL http://arxiv.org/abs/1107.1744.
-
(2011)
SIAM Journal on Optimization
-
-
Agarwal, A.1
Foster, D.P.2
Hsu, D.3
Kakade, S.M.4
Rakhlin, A.5
-
3
-
-
84860244324
-
Information-theoretic lower bounds on the oracle complexity of convex optimization
-
May
-
A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J.Wainwright. Information-theoretic lower bounds on the oracle complexity of convex optimization. IEEE Transactions on Information Theory, 58(5):3235-3249, May 2012.
-
(2012)
IEEE Transactions on Information Theory
, vol.58
, Issue.5
, pp. 3235-3249
-
-
Agarwal, A.1
Bartlett, P.L.2
Ravikumar, P.3
Wainwright, M.J.4
-
4
-
-
0141693771
-
An elementary introduction to modern convex geometry
-
S. Levy, editor,. MSRI Publications
-
K. Ball. An elementary introduction to modern convex geometry. In S. Levy, editor, Flavors of Geometry, pages 1-58. MSRI Publications, 1997.
-
(1997)
Flavors of Geometry
, pp. 1-58
-
-
Ball, K.1
-
5
-
-
80555137396
-
High-probability regret bounds for bandit online linear optimization
-
P. L. Bartlett, V. Dani, T. P. Hayes, S. M. Kakade, A. Rakhlin, and A. Tewari. High-probability regret bounds for bandit online linear optimization. In Proceedings of the Twenty First Annual Conference on Computational Learning Theory, 2008.
-
(2008)
Proceedings of the Twenty First Annual Conference on Computational Learning Theory
-
-
Bartlett, P.L.1
Dani, V.2
Hayes, T.P.3
Kakade, S.M.4
Rakhlin, A.5
Tewari, A.6
-
6
-
-
0037403111
-
Mirror descent and nonlinear projected subgradient methods for convex optimization
-
A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31:167-175, 2003.
-
(2003)
Operations Research Letters
, vol.31
, pp. 167-175
-
-
Beck, A.1
Teboulle, M.2
-
7
-
-
0036342276
-
The ordered subsets mirror descent optimization method with applications to tomography
-
A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent optimization method with applications to tomography. SIAM Journal on Optimization, 12:79-108, 2001.
-
(2001)
SIAM Journal on Optimization
, vol.12
, pp. 79-108
-
-
Ben-Tal, A.1
Margalit, T.2
Nemirovski, A.3
-
14
-
-
0344875562
-
The robustness of the p-norm algorithms
-
C. Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3), 2002.
-
(2002)
Machine Learning
, vol.53
, Issue.3
-
-
Gentile, C.1
-
16
-
-
0008815681
-
Exponentiated gradient versus gradient descent for linear predictors
-
Jan.
-
J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-64, Jan. 1997.
-
(1997)
Information and Computation
, vol.132
, Issue.1
, pp. 1-64
-
-
Kivinen, J.1
Warmuth, M.2
-
19
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
22
-
-
84938533326
-
Introduction to the non-asymptotic analysis of random matrices
-
chapter 5. Cambridge University Press
-
R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing: Theory and Applications, chapter 5, pages 210-268. Cambridge University Press, 2012.
-
(2012)
Compressed Sensing: Theory and Applications
, pp. 210-268
-
-
Vershynin, R.1
-
23
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
24
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11:2543-2596, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2543-2596
-
-
Xiao, L.1
-
25
-
-
0033233737
-
Information-theoretic determination of minimax rates of convergence
-
Y. Yang and A. Barron. Information-theoretic determination of minimax rates of convergence. Annals of Statistics, 27(5):1564-1599, 1999.
-
(1999)
Annals of Statistics
, vol.27
, Issue.5
, pp. 1564-1599
-
-
Yang, Y.1
Barron, A.2
|