메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1439-1447

Finite sample convergence rates of zero-order stochastic optimization methods

Author keywords

[No Author keywords available]

Indexed keywords

DERIVATIVE-FREE ALGORITHM; FINITE SAMPLE CONVERGENCE; INFORMATION-THEORETIC LOWER BOUNDS; NOISY FUNCTION VALUES; RANDOM PERTURBATIONS; STOCHASTIC GRADIENT METHODS; STOCHASTIC OPTIMIZATION METHODS; STOCHASTIC OPTIMIZATION PROBLEMS;

EID: 84877739294     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (27)
  • 4
    • 0141693771 scopus 로고    scopus 로고
    • An elementary introduction to modern convex geometry
    • S. Levy, editor,. MSRI Publications
    • K. Ball. An elementary introduction to modern convex geometry. In S. Levy, editor, Flavors of Geometry, pages 1-58. MSRI Publications, 1997.
    • (1997) Flavors of Geometry , pp. 1-58
    • Ball, K.1
  • 6
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31:167-175, 2003.
    • (2003) Operations Research Letters , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 7
    • 0036342276 scopus 로고    scopus 로고
    • The ordered subsets mirror descent optimization method with applications to tomography
    • A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent optimization method with applications to tomography. SIAM Journal on Optimization, 12:79-108, 2001.
    • (2001) SIAM Journal on Optimization , vol.12 , pp. 79-108
    • Ben-Tal, A.1    Margalit, T.2    Nemirovski, A.3
  • 14
    • 0344875562 scopus 로고    scopus 로고
    • The robustness of the p-norm algorithms
    • C. Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3), 2002.
    • (2002) Machine Learning , vol.53 , Issue.3
    • Gentile, C.1
  • 16
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Jan.
    • J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-64, Jan. 1997.
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.2
  • 19
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 22
    • 84938533326 scopus 로고    scopus 로고
    • Introduction to the non-asymptotic analysis of random matrices
    • chapter 5. Cambridge University Press
    • R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing: Theory and Applications, chapter 5, pages 210-268. Cambridge University Press, 2012.
    • (2012) Compressed Sensing: Theory and Applications , pp. 210-268
    • Vershynin, R.1
  • 23
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 24
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11:2543-2596, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2543-2596
    • Xiao, L.1
  • 25
    • 0033233737 scopus 로고    scopus 로고
    • Information-theoretic determination of minimax rates of convergence
    • Y. Yang and A. Barron. Information-theoretic determination of minimax rates of convergence. Annals of Statistics, 27(5):1564-1599, 1999.
    • (1999) Annals of Statistics , vol.27 , Issue.5 , pp. 1564-1599
    • Yang, Y.1    Barron, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.