메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 458-466

Multiplicative forests for continuous-time processes

Author keywords

[No Author keywords available]

Indexed keywords

CLOSED FORM; CONTINUOUS-TIME; MODEL UPDATES; PARAMETER SPACES; PERFORMANCE AND SCALABILITIES; REGRESSION TREES; TEMPORAL TRAJECTORIES;

EID: 84877737237     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (19)
  • 1
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • T. Dean and K. Kanazawa, "A model for reasoning about persistence and causation," Computational Intelligence, vol. 5, no. 2, pp. 142-150, 1989.
    • (1989) Computational Intelligence , vol.5 , Issue.2 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 2
    • 33749257956 scopus 로고    scopus 로고
    • Learning continuous time Bayesian networks
    • U. Nodelman, C. R. Shelton, and D. Koller, "Learning continuous time Bayesian networks," in UAI, 2003.
    • (2003) UAI
    • Nodelman, U.1    Shelton, C.R.2    Koller, D.3
  • 4
    • 77956943618 scopus 로고    scopus 로고
    • Expectation propagation for continuous time Bayesian networks
    • U. Nodelman, D. Koller, and C. R. Shelton, "Expectation propagation for continuous time Bayesian networks," in UAI, 2005.
    • (2005) UAI
    • Nodelman, U.1    Koller, D.2    Shelton, C.R.3
  • 5
    • 80053214558 scopus 로고    scopus 로고
    • Reasoning at the right time granularity
    • S. Saria, U. Nodelman, and D. Koller, "Reasoning at the right time granularity," in UAI, 2007.
    • (2007) UAI
    • Saria, S.1    Nodelman, U.2    Koller, D.3
  • 6
    • 80053135175 scopus 로고    scopus 로고
    • Mean field variational approximation for continuous-time Bayesian networks
    • I. Cohn, T. El-Hay, N. Friedman, and R. Kupferman, "Mean field variational approximation for continuous-time Bayesian networks," in UAI, 2009.
    • (2009) UAI
    • Cohn, I.1    El-Hay, T.2    Friedman, N.3    Kupferman, R.4
  • 7
    • 84864629090 scopus 로고    scopus 로고
    • Sampling for approximate inference in continuous time Bayesian networks
    • Y. Fan and C. R. Shelton, "Sampling for approximate inference in continuous time Bayesian networks," in AI and Mathematics, 2008.
    • (2008) AI and Mathematics
    • Fan, Y.1    Shelton, C.R.2
  • 8
    • 80053160716 scopus 로고    scopus 로고
    • Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks
    • V. Rao and Y. Teh, "Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks," in UAI, 2011.
    • (2011) UAI
    • Rao, V.1    Teh, Y.2
  • 9
    • 0000987227 scopus 로고
    • Causal independence for knowledge acquisition and inference
    • D. Heckerman, "Causal independence for knowledge acquisition and inference," in UAI, pp. 122-127, 1993.
    • (1993) UAI , pp. 122-127
    • Heckerman, D.1
  • 10
    • 85162417196 scopus 로고    scopus 로고
    • A model for temporal dependencies in event streams
    • A. Gunawardana, C. Meek, and P. Xu, "A model for temporal dependencies in event streams," in NIPS, 2011.
    • (2011) NIPS
    • Gunawardana, A.1    Meek, C.2    Xu, P.3
  • 11
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests
    • C. Strobl, J. Malley, and G. Tutz, "An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests.," Psychological methods, vol. 14, no. 4, p. 323, 2009.
    • (2009) Psychological Methods , vol.14 , Issue.4 , pp. 323
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 12
    • 0002897323 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting," in Computational learning theory, 1995.
    • (1995) Computational Learning Theory
    • Freund, Y.1    Schapire, R.2
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 14
    • 0029886630 scopus 로고    scopus 로고
    • Blood pressure as a cardiovascular risk factor
    • W. Kannel, "Blood pressure as a cardiovascular risk factor," JAMA, vol. 275, no. 20, p. 1571, 1996.
    • (1996) JAMA , vol.275 , Issue.20 , pp. 1571
    • Kannel, W.1
  • 15
    • 77951149137 scopus 로고    scopus 로고
    • Continuous time Bayesian network reasoning and learning engine
    • C. Shelton, Y. Fan, W. Lam, J. Lee, and J. Xu, "Continuous time Bayesian network reasoning and learning engine," JMLR, vol. 11, pp. 1137-1140, 2010.
    • (2010) JMLR , vol.11 , pp. 1137-1140
    • Shelton, C.1    Fan, Y.2    Lam, W.3    Lee, J.4    Xu, J.5
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman, "Greedy function approximation: a gradient boosting machine," Annals of Statistics, 2001.
    • (2001) Annals of Statistics
    • Friedman, J.1
  • 17
    • 84862633948 scopus 로고    scopus 로고
    • Poisson-networks: A model for structured point processes
    • S. Rajaram, T. Graepel, and R. Herbrich, "Poisson-networks: A model for structured point processes," in AI and Statistics, 2005.
    • (2005) AI and Statistics
    • Rajaram, S.1    Graepel, T.2    Herbrich, R.3
  • 19
    • 85162347977 scopus 로고    scopus 로고
    • Priors over recurrent continuous time processes
    • A. Saeedi and A. Bouchard-Ct, "Priors over recurrent continuous time processes," in NIPS, 2011.
    • (2011) NIPS
    • Saeedi, A.1    Bouchard-Ct, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.